2023年度一般入学試験問題

理 科(理工学部)

(2月8日)

開始時刻 午後2時45分 終了時刻 午後3時45分

物 理 1~14ページ

化 学 15~31ページ

生 物 33~58ページ

I 注意事項 (各科目共通)

- 1. 試験開始の合図があるまで、この問題冊子の中を見てはいけません。
- 2. この冊子は58ページです。落丁、乱丁、印刷の不鮮明及び解答用紙の汚れなどがあった場合に は申し出てください。
- 3. 上記の3科目の中から1科目を選択し、該当する解答用紙を切り離して解答してください。2科目以上を解答した場合は、すべて無効となります。
- 4. 解答用紙には解答欄以外に次の記入欄があるので、監督員の指示に従って、それぞれ正しく記入し、マークしてください。
 - ① 受験番号欄

受験番号を記入し、さらにその下のマーク欄にマークしてください。正しくマークされてい ない場合は、採点できないことがあります。

② 氏名欄

氏名とフリガナを記入してください。

- 5. 問題冊子の余白等は適宜利用してもかまいません。
- 6. 試験終了後、問題冊子は持ち帰ってください。
- ※ 解答上の注意は、裏表紙に記載してあります。この問題冊子を裏返して必ず読みなさい。

●入試過去問題活用宣言について

本試験の「化学」の問題につきまして、以下に記載の大学様の入試過去問題を活用させていただきました。

大問3

・公立千歳科学技術大学理工学部 化学基礎・化学(前期日程)の大問3を一部改変

大問5

- ・長崎大学2022年度入試「化学」の問題4を一部改変
- ・関東学院大学2020年度入試「化学2月3日」の問題4の問1を一部改変

物理

1 次の文章を読んで、 問1~7 に答えなさい。 {解答番号 <u>1</u> ~ <u>7</u> }	
1922年、(r)は X 線を物質にあてて、そこから散乱される X 線の波長を調べ、そこ射 X 線と同じ波長をもつものと、それよりも長い波長をもつものがあることを確認した。 x 軸上を正の向きに進む波長 λ の光子が、 x 軸上の原点に静止した質量 m の電子に弾性衝突 る。衝突後の光子の進行方向を、 x 軸の正の向きに対し反時計回りの角度 θ で表し、衝突後 子の波長を λ 、衝突後の電子の速度を (v_x, v_y) とする。なお、散乱は $x-y$ 平面上で起こる。また、プランク定数を h 、光速を c とする。	定すの光
 問 1 前の文章の(ア)にあてはまる人名として最も適切なものを、次の①~⑥のうちかつ選び、解答欄の記号をマークしなさい。 1 ① アインシュタイン ② ド・ブロイ ③ プランク ④ コンプトン ⑤ トムソン ⑥ ハイゼンベルグ 	5 1
問 2 衝突前の光子のエネルギーとして最も適切なものを、次の①~⑤のうちから1つ選び、 答欄の記号をマークしなさい。 $\boxed{2}$ ① $\frac{h}{\lambda}$ ② $\frac{hc}{\lambda c}$ ③ $\frac{hc}{\lambda}$ ④ $\frac{hc^2}{\lambda}$ ⑤ $\frac{h}{\lambda c^2}$	解
問 3 衝突前の光子の運動量として最も適切なものを、次の①~⑤のうちから1つ選び、解の記号をマークしなさい。 3 ① $\frac{h}{\lambda}$ ② $\frac{h}{\lambda c}$ ③ $\frac{hc}{\lambda}$ ④ $\frac{hc^2}{\lambda}$ ⑤ $\frac{h}{\lambda c^2}$	≨欄
 問4 衝突後の光子の波長と電子の速度を求めるために必要な保存則の組は何か。最も適切のを、次の①~⑤のうちから1つ選び、解答欄の記号をマークしなさい。 4 ① 運動量保存則 質量保存則 ② 運動量保存則 エネルギー保存則 ③ 質量保存則 エネルギー保存則 ④ 電荷保存則 エネルギー保存則 ⑤ 電荷保存則 質量保存則 	ьź

問 5 衝突後の光子の波長と電子の速度を求めるために必要な保存則の式の組み合わせとして最も適切なものを、次の① \sim ⑤のうちから1つ選び、解答欄の記号をマークしなさい。

5

$$\underbrace{1}_{\lambda} \frac{hc}{\lambda} = \frac{1}{2} m v_x^2, \quad 0 = \frac{hc}{\lambda} + \frac{1}{2} m v_y^2, \quad \frac{h}{\lambda} = \frac{h}{\lambda'} + m (v_x + v_y)$$

②
$$\frac{hc}{\lambda} = \frac{hc}{\lambda'} + \frac{1}{2} m(v_x^2 + v_y^2), \quad \frac{h}{\lambda} = \frac{h}{\lambda'} + m(v_x + v_y)$$

$$\frac{hc}{\lambda} = \frac{hc}{\lambda'} + \frac{1}{2} m(v_x^2 + v_y^2)$$

$$, \frac{h}{\lambda} = \frac{h}{\lambda'} (\cos \theta + \sin \theta) + (v_x + v_y)$$

$$\boxed{5} \quad \frac{hc}{\lambda} = \frac{hc}{\lambda'} + \frac{1}{2} m(v_x^2 + v_y^2), \quad \frac{h}{\lambda} = \frac{h}{\lambda'} \sin \theta + mv_x$$

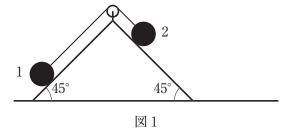
$$, \quad 0 = \frac{h}{\lambda'} \cos \theta + mv_y$$

問 6 衝突後の光子の波長 λ' と衝突前の波長 λ との差を表す式として最も適切なものを、次の ①~⑤のうちから 1 つ選び、解答欄の記号をマークしなさい。ここで、 $\lambda = \lambda'$ を使っている。 6

$$(2) \quad \lambda' - \lambda = \frac{2m}{h} v_x - \frac{m}{h^2} (v_x^2 + v_y^2)$$

$$(3) \quad \lambda' - \lambda = \frac{h}{mc} (1 - \cos \theta)$$

(4)
$$\lambda' - \lambda = \frac{m}{2hc}(1 - \cos\theta)$$


(5)
$$\lambda' - \lambda = \frac{2m}{h} v_y - \frac{m}{h^2} (v_x^2 + v_y^2)$$

問7 衝突後の光子の波長 λ が衝突前の波長 λ の 2 倍になったとき、電子の衝突後の運動エネ ルギーとして最も適切なものを、次の①~②のうちから1つ選び、解答欄の記号をマークし なさい。 7

- ① $\frac{hc}{\lambda}$ ② $\frac{hc}{2\lambda}$ ③ $\frac{2hc}{\lambda}$ ④ $\frac{3hc}{2\lambda}$ ⑤ $\frac{hc}{4\lambda}$

2 次の文章を読んで、**問1~5**に答えなさい。 {解答番号 8 ~ 12

左右の斜面のなす角が 90° で,頂点に質量の無視できる滑車の付いた質量 M の三角台を水平な床に置く(図 1)。これらの斜面の傾斜角は床に対して,どちらも 45° である。質量が無視でき,伸び縮みしない糸を滑車にかける。糸の両端に質量 m のおもり 1 と質量 2m のおもり 2 を取り付ける。重力加速度の大きさを g とし,おもりの大きさ,空気抵抗,斜面とおもりとの間の摩擦,滑車と糸との間の摩擦は無視する。つぎの実験 I,II で床の材質を変える。どちらの実験でも,おもり 1,2 は斜面に接触したままである場合を考える。

実験 I 三角台との間の摩擦がある床の上で、三角台とおもり 1, 2 を手でおさえて、これらの物体を静止させてから同時に手放す。このとき、三角台は床の上で静止したままである。

問1 おもり1,2が斜面上を動いているとき、これらのおもりの加速度の大きさ、糸から1,2 にはたらく力の大きさとして最も適切なものを、次の①~⑧のうちから1つ選び、解答欄の 記号をマークしなさい。 8

加速度の大きさ

力の大きさ

$$\frac{5}{6}\sqrt{2} mg$$

$$2 \qquad \frac{3\sqrt{2}}{2}g \qquad \qquad 2\sqrt{2}mg$$

$$2\sqrt{2} mg$$

$$3 2\sqrt{2} g \frac{5\sqrt{2}}{2} mg$$

$$\frac{5\sqrt{2}}{2}mg$$

$$\frac{7\sqrt{2}}{2}mg$$

$$\frac{1+\sqrt{2}}{2}mg$$

$$\frac{2\sqrt{2}}{3}mg$$

$$\frac{7\sqrt{2}}{2}mg$$

問 2 床から三角台にはたらく静止摩擦力の大きさと向きとして最も適切なものを、次の①~④ のうちから1つ選び、解答欄の記号をマークしなさい。 9

大きさ 向き

- ① $\sqrt{2} mg$ 水平右向き
- ② $\sqrt{2} mg$ 水平左向き
- ③ $\frac{1}{2}mg$ 水平右向き
- ④ $\frac{1}{2}mg$ 水平左向き
- 実験Ⅱ 三角台との間の摩擦がない床の上で、三角台とおもり1、2を手でおさえて、これらの物体を静止させてから同時に手放す。このとき、三角台は床の上で動き出す。三角台に対するおもり1の加速度と三角台に対するおもり2の加速度は図2のように表せる。破線は、これらの加速度の水平成分と鉛直成分である。

三角台に対するおもり1の加速度

三角台に対するおもり2の加速度

図 2

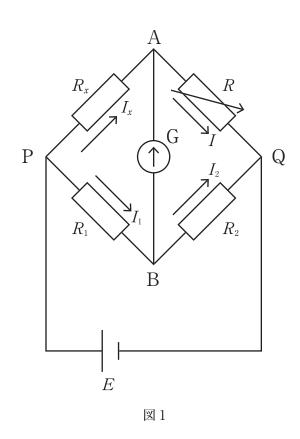
- **問 3** 三角台に対するおもり 1, 2の加速度の大きさを a, 水平右向きと鉛直上向きを正の向きとする。三角台に対する加速度の水平成分と鉛直成分として最も適切なものを、次の①~④のうちから 1 つ選び、解答欄の記号をマークしなさい。 10
 - おもり1の加速度の おもり1の加速度の おもり2の加速度の おもり2の加速度の 水平成分 鉛直成分 水平成分 鉛直成分

①
$$\frac{1}{2}a$$
 $\frac{\sqrt{2}}{2}a$ $\frac{1}{2}a$ $-\frac{\sqrt{2}}{2}a$
② $\frac{\sqrt{2}}{2}a$ $\frac{\sqrt{2}}{2}a$ $\frac{\sqrt{2}}{2}a$ $-\frac{\sqrt{2}}{2}a$
③ $\frac{\sqrt{2}}{2}a$ $\frac{1}{2}a$ $\frac{1}{2}a$ $-\frac{\sqrt{2}}{2}a$
④ $\frac{\sqrt{2}}{2}a$ $\frac{1}{2}a$ $\frac{\sqrt{2}}{2}a$ $-\frac{1}{2}a$

問 4 次に、床に対する三角台の加速度をA、糸からおもり1、2にはたらく力の大きさをT、三角台からおもり1、2にはたらく力の大きさをそれぞれ N_1 、 N_2 とする。水平右向きと鉛直上向きを正の向きとして、床に対するおもり1、2の運動方程式を立てる。これらの運動方程式の水平成分と鉛直成分として最も適切なものを、次の① \sim ®のうちから1つ選び、解答欄の記号をマークしなさい。 $\boxed{11}$

問 5 水平右向きを正の向きとして、床に対する三角台の運動方程式を立てる。この運動方程式の水平成分として最も適切なものを、次の① \sim 8のうちから1つ選び、解答欄の記号をマークしなさい。 $\boxed{12}$

(1)
$$MA = \sqrt{2} N_1 + (-\sqrt{2} N_2)$$


②
$$MA = \sqrt{2} N_1 + \sqrt{2} N_2$$

(4)
$$MA = (-\sqrt{2} N_1) + \sqrt{2} N_2$$

(5)
$$MA = \left(-\frac{\sqrt{2}}{2}N_1\right) + \left(-\frac{\sqrt{2}}{2}N_2\right)$$

(6)
$$MA = \left(-\frac{\sqrt{2}}{2}N_1\right) + \frac{\sqrt{2}}{2}N_2$$

3

抵抗値が R_1 , R_2 と分かっている抵抗、検流計G, 可変抵抗、抵抗値 R_x が未知の抵抗、および内部抵抗の無視できる起電力E の電池を用いて、図1 のような回路を作る。ここで、可変抵抗の抵抗値R を変化させて、検流計に流れる電流が0 になるように調節した。

抵抗値 R_1 , R_2 , R_x , R の抵抗に流れる電流をそれぞれ I_1 , I_2 , I_x , I とすると,検流計 G に流れる電流は 0 なので, I_1 は () となり, I_x は () となる。

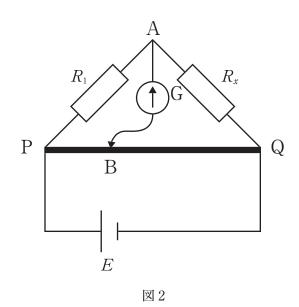
また、キルヒホッフの第二法則より、閉回路 APBA について(ゥ)となり、閉回路 BQAB について(エ)となる。

以上の4つの関係から、図1の回路内の4つの抵抗値の関係は、(オ)となる。

問 1 文章中の空欄(ア),(イ)に入る値の組合せとして,最も適切なものを,次の①~ ④のうちから1つ選び,解答欄の記号をマークしなさい。 13

	ア	イ
1	0	0
2	I_x	I_1
3	I_2	I
4	I	I_2

問 2 文章中の空欄(ウ),(エ)に入る式の組合せとして,最も適切なものを,次の①~ ④のうちから1つ選び、解答欄の記号をマークしなさい。 14


	ウ	工
1	$I_x + I_1 = 0$	$I_2 + I = 0$
2	$I_x - I_1 = 0$	$I_2 - I = 0$
3	$R_1I_1-R_xI_x=0$	$R_2I_2-RI=0$
4	$R_1I_1 + R_xI_x = 0$	$R_2I_2+RI=0$

- 問3 文章中の空欄(オ)に入る式として、最も適切なものを、次の①~④のうちから1つ選
 - び、解答欄の記号をマークしなさい。 15

① $R_x = R$, $R_1 = R_2$

② $R_x R = R_1 R_2$

 \mathfrak{G} $R_x R_1 = R R_2$

次に、抵抗値が R_1 と分かっている抵抗、検流計G、抵抗値が未知の抵抗 R_r 、太さが一様で単 位長さあたりの抵抗値がrの抵抗線PQを用いて、図2のような回路を作る。検流計につながれ ている接点Bは、抵抗線PQ上を自由に移動でき、検流計Gに電流が流れなくなる位置に移し た。このとき、PBとBQの長さはそれぞれx、yであった。

問 4 抵抗線上の PB 間の抵抗値として、最も適切なものを、次の①~⑧のうちから1つ選び、

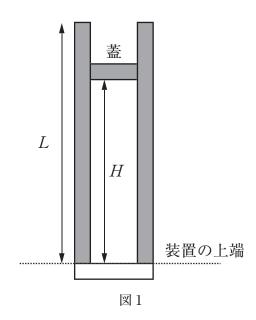
解答欄の記号をマークしなさい。 16

 \bigcirc 0

問 5 抵抗値 R_x として、最も適切なものを、次の①~bのうちから1つ選び、解答欄の記号を

マークしなさい。 17

- ① 0 ② R_1 ③ $R_1 \frac{x}{y}$ ④ $R_1 \frac{y}{x}$ ⑤ $R_1 \frac{x}{x+y}$


 $b r \frac{y}{x+y}$

長さLの断熱材の円筒がある。これに滑らかに動く断熱材の蓋を取り付けて気体を閉じ込めることができるようにした(図1)。蓋の面積はSで蓋の厚みと質量は無視できる。円筒の底部には閉じ込めた気体を加熱・冷却できる装置が取り付けてある。この装置の上端から蓋までの距離をHとする。円筒・蓋・装置の熱容量は無視できる。この内部に物質量n[mol]の,定積モル比熱が $C_V = \frac{3}{2} R$,定圧モル比熱が $C_P = \frac{5}{2} R$ である理想気体を閉じ込めた。R は気体定数である。外気温は T_0 ,大気圧は P_0 である。

円筒の上部には音源があり、振動数fの音波(正弦波)を発している。波長を λ とする。気温 T_0 における音速は V_0 である。蓋から内部の気体へは音波は伝わらない。開口端補正は無視できる。

- (1) はじめに、H = L のとき、気体の温度は T_1 であった。
- (2) 下部の装置を用いて気体を冷却してゆっくりとHを減少させていき、 $H = H_2$ のとき、はじめて共鳴が観測された。このときの気体の温度は T_2 であった。
- (3) つぎにゆっくりとHを減少させていくと、 $H=H_3$ のとき、2回目の共鳴が観測された。このときの気体の温度は T_3 であった。
- (4) つぎに $H = H_3$ からゆっくりとHを増加させて $H = H_2$ の位置まで蓋を戻した。

○ 音源

- 問 1 この音波の音速として、最も適切なものを、次の①~@のうちから1つ選び、解答欄の記 号をマークしなさい。 18
 - ① $\frac{f(L-H_2)}{4}$ ② $\frac{f(L-H_2)}{2}$ ③ $f(L-H_2)$ ④ $2f(L-H_2)$

- (5) $4f(L-H_2)$ (6) $\frac{L-H_2}{4f}$ (7) $\frac{L-H_2}{2f}$ (8) $\frac{L-H_2}{f}$
- $9 \frac{2(L-H_2)}{f}$ a $\frac{4(L-H_2)}{f}$
- **問 2** 温度 T_2 として、最も適切なものを、次の① \sim ②のうちから1つ選び、解答欄の記号を マークしなさい。 19

- ① $\frac{P_0SH_2}{4nR}$ ② $\frac{P_0SH_2}{2nR}$ ③ $\frac{P_0SH_2}{nR}$ ④ $\frac{2P_0SH_2}{nR}$
- (5) $\frac{4P_0SH_2}{nR}$ (6) $\frac{P_0S(L-H_2)}{4nR}$ (7) $\frac{P_0S(L-H_2)}{2nR}$ (8) $\frac{P_0S(L-H_2)}{nR}$

- **問3** H_3 として、最も適切なものを、次の① \sim ②のうちから1つ選び、解答欄の記号をマーク しなさい。 20

- ① $L \frac{1}{4}\lambda$ ② $L \frac{1}{2}\lambda$ ③ $L \lambda$ ④ $L \frac{5}{4}\lambda$ ⑤ $L \frac{3}{2}\lambda$
- (6) $H_2 \frac{1}{4}\lambda$ (7) $H_2 \frac{1}{2}\lambda$ (8) $H_2 \lambda$ (9) $H_2 \frac{5}{4}\lambda$ (a) $H_2 \frac{3}{2}\lambda$

- **問 4** (3)の、温度 $T_2 \rightarrow T_3$ の変化における気体の内部エネルギー変化として、最も適切なもの を、次の①~②のうちから1つ選び、解答欄の記号をマークしなさい。
 - ① $\frac{1}{4}P_0S\lambda$ ② $\frac{1}{2}P_0S\lambda$ ③ $\frac{3}{4}P_0S\lambda$ ④ $P_0S\lambda$ ⑤ $\frac{5}{4}P_0S\lambda$

- (6) $\frac{3}{2}P_0S\lambda$ (7) $-\frac{1}{4}P_0S\lambda$ (8) $-\frac{1}{2}P_0S\lambda$ (9) $-\frac{3}{4}P_0S\lambda$ (a) $-P_0S\lambda$

- (b) $-\frac{5}{4}P_0S\lambda$ (c) $-\frac{3}{2}P_0S\lambda$ (d) 0

問 5 (3)の、温度 $T_2 \rightarrow T_3$ の変化において下部の装置が気体に与えた熱量として、最も適切な ものを、次の①~①のうちから1つ選び、解答欄の記号をマークしなさい。

- ① $\frac{1}{4}P_0S(H_2-H_3)$ ② $\frac{1}{2}P_0S(H_2-H_3)$ ③ $\frac{3}{4}P_0S(H_2-H_3)$

- (4) $P_0S(H_2 H_3)$ (5) $\frac{3}{2}P_0S(H_2 H_3)$ (6) $\frac{5}{2}P_0S(H_2 H_3)$

- ① $\frac{1}{4}P_0S(H_3-H_2)$ 8 $\frac{1}{2}P_0S(H_3-H_2)$ 9 $\frac{3}{4}P_0S(H_3-H_2)$

- (a) $P_0S(H_3 H_2)$ (b) $\frac{3}{2}P_0S(H_3 H_2)$ (c) $\frac{5}{2}P_0S(H_3 H_2)$

(d) ()

問 6 (3)と(4)の, 温度 $T_2 \rightarrow T_3 \rightarrow T_2$ の変化において気体が外部にした仕事として、最も適切な ものを、次の①~⑥のうちから1つ選び、解答欄の記号をマークしなさい。 23

- ① $\frac{1}{4}P_0S\lambda$ ② $\frac{1}{2}P_0S\lambda$ ③ $\frac{3}{4}P_0S\lambda$ ④ $P_0S\lambda$ ⑤ $\frac{5}{4}P_0S\lambda$
- (6) $\frac{3}{2}P_0S\lambda$ (7) $-\frac{1}{4}P_0S\lambda$ (8) $-\frac{1}{2}P_0S\lambda$ (9) $-\frac{3}{4}P_0S\lambda$ (a) $-P_0S\lambda$

(b) $-\frac{5}{4}P_0S\lambda$ (c) $-\frac{3}{2}P_0S\lambda$ (d) 0

化 学

							。最も近い作	
6) # —			ただし,	カラット	は質量の単	4位で、1.0	カラットは	0.20 g で ā
L		個	@ 1F	1022		. 1022	() 10 W	1 023
	1.0×1		2 1.5		(3) 3.0 ×	< 1022	④ 1.0 ×	1023
(5)	1.5×1	10-3	6 3.0	× 10=°				
月2 沙	の分子	式で表さ	れる各気体	本を同じ質量	遣だけ用意し	たとき,常	温常圧で体積	責が最大に
60	はどれ	か。次の	①~⑥から	選びなさい	,° p			
1	N_2	② H ₂	3	CO_2 4	H_2S	⑤ NH ₃	⑥ Cl ₂	
引 3 標	厚準状態	で 30 mL	を占める	メタン CH4	とエチレン	C ₂ H ₄ の混合	↑気体を完全	燃焼させん
標準	基状態で	40 mL Ø	二酸化炭	素 CO ₂ が得	られた。元	の混合気体	中のメタンと	エチレン
積比	C(CH ₄ :	C ₂ H ₄) 12 1	最も近い値	iを,次の①	~⑥から選	びなさい。	С	
1	3:1	② 2:	1 ③	1:1 4	1:2	⑤ 1:3	6 1:4	
引 4 条	を件(ア)~	(ウ)にあて	はまる金属	属の組み合わ	つせとして最	も適切なも	のを, 次の(D~⑥から
なさ	· / · · [d						
(7)	希塩酸	と反応し	水素を乳	色生して溶解	異するが、濃	:硝酸を加え	ると不動態に	こなる。
(イ)	塩酸と	は反応せ	ず,硝酸と	は反応する	らが, このと	き発生する	気体は水素で	ではない。
(ウ)	ほとん	どの薬品	と反応しな	ないが、王才	くに溶ける。			
		1	2	3	4	5	6	
	(P)	Cu	Cu	Al	Al	Pt	Pt	
	(1)	Al	Pt	Cu	Pt	Al	Cu	
	(ウ)	Pt	Al	Pt	Cu	Cu	Al	
						1		

3 6.3

⑦ 6.7

④ 6.4

8 6.8

② 6.2

6.6

① 6.1

⑤ 6.5

				Nt - 0= 00 1 - 1				The state of the s
問		0.050 mol/L のアン			-			
		次の①~⑧から	選ひなさい。	, たたし25 C	における	る ア ン モニ ア <u>ブ</u>	(俗後の電	離度は 0.020
	_	する。 <u>f</u>	(a) 0.0		0.0		10	
		7.0	② 8.0		9.0	(4)		
	(5)	11	6 12	7	13	8	14	
88	7 P	与主の歴 所え 説明	していて由	なしし イ目 す	本によっ	r # + . \h o (1	02.6	記ァドナ、ショ、
問	/ 占	塩素の性質を説明 ─────────	している内	谷として取る。	適切なり	く早を、次のは)~(9)からす	速いなるい。
		g 土畑なのたはで	制油 白みきょう					
	 (1) (2) 	赤褐色の気体です						
	3	黒紫色の気体で						
	4	黄緑色の気体で刺		0 0				
	(1)	赤褐色の気体です		`				
	6	那個色の気体で 黒紫色の気体で						
	(7)	無条色の気体で 黄緑色の気体で						
	(8)	無色の気体で刺え		•0				
	9	無色の気体で空気		パルナフ				
	9)	無色の外体で主	メバー出出すたので	. 光八りる。				
問	م د	フッ化カルシウム(の粉末に濃症	を酸を加えて加	執するり	・硫酸カルシウ	スとフッイ	ア水 表が得ら
l-J		た。以下の反応式の						
		と。]	/v/httv// 日 42 C			2, 000	
		$CaF_2 + (4) H_2S$.O₄	(ウ) CaSO。	+ (エ) H	ıF		
	(1)	(7) = 1, (4) = 1,			. (/ 12			
	2	(7) = 1, (4) = 1,						
	3	(7) = 1, (4) = 2,						
	4	(7) = 1, (1) = 2,						
	<u></u>	(7) = 1, (4) = 4,						
	6	(7) = 2, (1) = 4,						
		(7) = 2, (4) = 5,						

(8) (7)=4, (4)=5, (4)=4, (4)=5

(9) (7)=3, (4)=5, (4)=3, (4)=5

- - ① 白色固体で水には少ししか溶けない。
 - ② 白色固体で水にはよく溶ける。
 - ③ 薄青色の固体で水には少ししか溶けない。
 - ④ 薄青色の固体で水にはよく溶ける。
 - ⑤ 灰色の固体で水には少ししか溶けない。
 - ⑥ 灰色の固体で水にはよく溶ける。
 - ⑦ 濃青色の固体で水には少ししか溶けない。
 - ⑧ 濃青色の固体で水にはよく溶ける。
 - ⑨ 無色の固体で水にはよく溶ける。

長1 化学結合お	とが針目のましい			
長1 化学結合お	トが仕日のせしみ			
		公尼 灶目	瓜 乙.牡目	サ左は今のは目
1# 'F'	イオン結晶	金属結晶	分子結晶	共有結合の結晶
構成元素	(7)	(1)	(ウ)	(<u>T</u>)
結合を作る粒子	(4)	(カ)	(+)	(2)
結合	(ケ)	(3)	原子間:(サ)	(ス)
			分子間:(シ)	
化学式	(+2)	(ソ)	(タ)	(F)
電気伝導性	固体:(ツ) 融解液・水溶液:(テ)	(<i>F</i>)	()	(二) (例外あり)
a	(エ)に入る最も適切な「構			
a ① (ア)金属の	み (イ)金属のみ (ウ)金属	このみ (エ)金,	属または非金属	į.
a ① (ア)金属の ② (ア)金属ま	み (イ)金属のみ (ウ)金属 たは非金属 (イ)金属のみ	らのみ (エ)金。 (ウ)金属ま	属または非金属 たは非金属 (エ	手金属のみ
a ① (ア)金属の ② (ア)金属ま	み (イ)金属のみ (ウ)金属	らのみ (エ)金。 (ウ)金属ま	属または非金属 たは非金属 (エ	手金属のみ
a ① (ア)金属の ② (ア)金属ま ③ (ア)金属ま	み (イ)金属のみ (ウ)金属 たは非金属 (イ)金属のみ	らのみ (エ)金。 (ウ)金属ま (ウ)非金属	属または非金属 たは非金属 (エ のみ (エ)非金属	: 非金属のみ のみ

- ① (オ)陽イオン+陰イオン (カ)金属陽イオン+自由電子 (キ)原子 (ク)分子
- ② (オ)原子 (カ)分子 (キ)金属陽イオン+自由電子 (ク)陽イオン+陰イオン
- ③ (オ)原子 (カ)金属陽イオン+自由電子 (キ)陽イオン+陰イオン (ク)分子
- ④ (オ)原子 (カ)陽イオン+陰イオン (キ)金属陽イオン+自由電子 (ク)分子
- ⑤ (オ)陽イオン+陰イオン (カ)金属陽イオン+自由電子 (キ)分子 (ク)原子

(ケ)共有結合 (コ)イオン結合 (サ)金属結合 (シ)共有結合 (ス)分子間力 (ケ)分子間力 (コ)金属結合 (サ)共有結合 (シ)分子間力 (ス)イオン結合 (ケ)イオン結合 (コ)金属結合 (サ)分子間力 (シ)共有結合 (ス)共有結合 (ケ)分子間力 (コ)共有結合 (サ)金属結合 (シ)分子間力 (ス)共有結合	
(ケ)イオン結合 (コ)金属結合 (サ)分子間力 (シ)共有結合 (ス)共有結合	
ケ)分子間力 (コ)共有結合 (サ)金属結合 (シ)分子間力 (ス)共有結合	
1の(セ)~(チ)に入る最も適切な「化学式」の組み合わせを,次の①~⑤から逞 ——	選びなさ
<u>e</u>	
(セ)組成式 (ソ)組成式 (タ)分子式 (チ)分子式	
(七)組成式 (ソ)組成式 (タ)分子式 (チ)組成式	
(セ)組成式 (ソ)分子式 (タ)組成式 (チ)組成式	
(セ)組成式 (ソ)分子式 (タ)分子式 (チ)組成式	
(セ)組成式 (ソ)分子式 (タ)組成式 (チ)分子式	
(ツ)あり (テ)なし (ト)あり (ナ)なし (二)なし	
(ツ)なし (テ)なし (ト)あり (ナ)なし (二)なし	
(ツ)あり (テ)あり (ト)なし (ナ)なし (二)なし	
(ツ)あり (テ)なし (ト)あり (ナ)あり (二)なし	
(ツ)なし (テ)あり (ト)あり (ナ)なし (二)なし	
1の(二)では、例外がある。例外として最も適切な物質を、次の①~⑤から遺	選びなさ
g	
ダイヤモンド ② ブドウ糖 ③ 黒鉛 ④ ケイ素	
二酸化ケイ素	
	(セ)組成式 (ソ)組成式 (タ)分子式 (チ)分子式 (チ)組成式 (ソ)組成式 (ソ)分子式 (チ)組成式 (ナ)組成式 (ナ)組成式 (ナ)組成式 (ナ)分子式 (ケ)組成式 (ナ)分子式 (ケ)の子式 (ケ)のよう (ケ)の(ケ)のよう (ケ)のよう (ケ)

問4 表1の(ケ)~(ス)に入る最も適切な「結合」の組み合わせを、次の①~⑤から選びなさい。

問 8 問7 の例外に関する次の文の空欄(マ)~(ヤ)に入る最も適切な語句の	の組み合わせ
を、以下の①~⑤から選びなさい。なお、同じ記号の空欄には同じ語句が入る。	h
この物質を構成する原子の価電子は(マ)個ある。そのうち(ミ)個は代	他の原子と結
合して網目状の(ム)構造を作るが、残りの(メ)個の価電子は(モ	E)である。
(ム)構造どうしは弱い(ヤ)で結びついているため, はがれやすい。	
① (マ) 3 (ミ) 2 (ム)平面 (メ) 2 (モ)不対電子 (ヤ)共有結合	
② (マ)4 (ミ)3 (ム)立体 (メ)1 (モ)自由に動ける電子 (ヤ)共有結合	
③ (マ) 3 (ミ) 2 (ム)平面 (メ) 2 (モ)不対電子 (ヤ)分子間力	
④ (マ)4 (ミ)3 (ム)平面 (メ)1 (モ)自由に動ける電子 (ヤ)分子間力	
⑤ (マ) 3 (ミ) 3 (ム)立体 (メ) 1 (モ)不対電子 (ヤ)分子間力	
[Ⅱ] 次の文は、電気陰性度、結合の極性、分子の極性に関連した記述である。」	以下の問9∼
11 に答えなさい。(解答記号 i ~ t)	
共有結合している 2 原子間の i は、どちらか一方の原子にかたよって存在	在する場合が
ある。たとえば、塩化水素分子の場合、水素原子より塩素原子の方にいくらか引き、	つけられてい
る。このように、異なる 2 原子間共有結合において j を引きつける強さに	は差があり,
この強さの程度を k という。塩化水素分子の場合、塩素原子がいくらか [1 の電
(A)	—— 水素のような
二原子分子において、結合している原子間に電荷のかたよりがあるとき n]という。一
方,3個以上の原子からなる分子,たとえば二酸化炭素分子は3個の原子が o	- に結合し
ているので,分子の極性は p になる。しかし,水分子では2つの共有結合?	が q
に結合しているので、分子は極性を r 。	
問 9 空欄 i ~ r に入る最も適切な語句を,次の①~ e から一つ~	ずつ選びなさ
い。なお,同じ選択肢を繰り返し選んでもよい。 i ~ r	
 極性分子 2 無極性分子 3 折れ線状 	
④ 円状⑤ 直線状⑥ 非共有電子対	
⑦ 共有電子対 8 電気陰性度 9 イオン化エネルコ	ギー
a 電子親和力b 正c 負	
① もつ② もたない	

1)~	-④から選びなさい。 s
1	周期表の右下にある元素ほど大きく、左上にある元素ほど小さい傾向がある。
2	周期表の右上にある元素ほど大きく、左下にある元素ほど小さい傾向がある。
3	周期表の左下にある元素ほど大きく、右上にある元素ほど小さい傾向がある。
(4)	周期表の左上にある元素ほど大きく、右下にある元素ほど小さい傾向がある。

問10 希(貴)ガスを除く周期表において、下線部(A)を説明する文として最も適切なものを、次の

問11	n	に該当す	上る物質を ,	次の①)~(5) \$\psi\$	ら一つ選び	びなさい。	t	
1	N_2	2	CCl_4	3	NH_3	4	CS_2	(5)	CH_4

3 次の文章を読み、以下の**問1~7**に答えなさい。ただし、硫酸と過酸化水素水の混合溶液の密度は1.25 g/cm³とする。(解答記号 a ~ g)

硫酸と過酸化水素水の混合溶液(以下,混合溶液とする)は,電子機器に欠かせない電子回路の 土台となる基板上の不要な銅を溶解し,除去する目的で利用されている。電子回路製造工場にお いて,この銅溶解速度を適切に維持するためには,混合溶液中の成分の濃度を化学分析に基づい て適切に管理する必要がある。

ある電子回路製造工場で使用されている混合溶液の硫酸および過酸化水素の濃度を確認するために、操作(1)~(3)の順で滴定を行った。

- (1) 試料となる混合溶液 1.00 mL をコニカルビーカーにとり、純水 50.0 mL を加えて薄めた。
- (2) (1)で調整した溶液の pH を pH メーターで測定しながら、0.500 mol/L の水酸化ナトリウム 水溶液を用いて滴定した。中和点までの滴下量は 10.0 mL であった。
- (3) (2)が終了した溶液に希硫酸を適量加えたのち, 0.200 mol/L の過マンガン酸カリウム水溶液を用いて滴定した。10.0 mL 滴下したところで, 滴下した過マンガン酸カリウム水溶液の赤紫色が消えなくなった。
- 問 1 操作(2)の滴定では、中和滴定によって硫酸の濃度を測定している。この滴定における次の 反応式の係数(ア)と(イ)および化学式(ウ)の組み合わせとして最も適切なものを、下の①~⑥から 選びなさい。 a

 $(7) H_2SO_4 + (1) NaOH \longrightarrow (7)(7) + (1) H_2O$

- ① (7)=2, (4)=1, $(4)=Na_2SO_4$
- ② (7)=1, (4)=2, (7)=Na₂SO₄
- (3) (7) = 2, (4) = 1, $(4) = NaSO_4$
- ④ (7)=1, (4)=2, $(5)=NaSO_4$
- (5) (7)=2, (4)=3, $(4)=Na_3(SO_4)_2$
- ⑥ (7)=3, (4)=2, $(4)=Na_3(SO_4)_2$

- **問 2** 操作(2)での pH 変化を説明する文として最も適切なものを、次の①~④から選びなさい。 ただし、混合溶液中の過酸化水素は pH 変化に影響しないものとし、水溶液の温度は常に 25℃に保たれているものとする。 b
 - ① 滴定開始直後のpH は中和点のpH よりも大きく,中和点ではpH が 10 付近になり,さらに滴定を続けるとpH が小さくなっていく。
 - ② 滴定開始直後の pH は中和点の pH よりも小さく、中和点では pH が 10 付近になり、さらに滴定を続けると pH が大きくなっていく。
 - ③ 滴定開始直後のpH は中和点のpHよりも大きく,中和点ではpHが7付近になり,さらに滴定を続けるとpHが小さくなっていく。
 - ④ 滴定開始直後のpH は中和点のpHよりも小さく,中和点ではpHが7付近になり,さらに滴定を続けるとpHが大きくなっていく。
- **問3** 操作(3)の滴定では、酸化還元反応によって過酸化水素水の濃度を測定している。この滴定における次の反応式の係数(r)~(r)の組み合わせとして最も適切なものを、下の①~⑥から選びなさい。 r

 $(\mathcal{7}) \, H_2 O_2 \quad + \quad (\mathcal{A}) \, KMnO_4 \quad + \quad (\mathcal{P}) \, H_2 SO_4 \\$

$$\longrightarrow$$
 K_2SO_4 + $(7)O_2$ + $(4)MnSO_4$ + $(x)H_2O$

- ① (7)=4, (4)=2, (4)=5, (4)=8
- ② (7)=4, (4)=2, (4)=8, (4)=5
- (3) (7) = 5, (4) = 2, (4) = 3, (4) = 8
- (4) (7) = 5, (4) = 2, (4) = 8, (4) = 3
- (5) (7) = 3, (4) = 2, (4) = 5, (4) = 3
- (6) (7) = 3, (4) = 2, (4) = 3, (4) = 5
- **問 4** 操作(3)の滴定での過マンガン酸カリウムのはたらきを説明する文として最も適切なもの を、次の①~④から選びなさい。 d
 - ① 酸化剤としてはたらき、反応に伴ってマンガンの酸化数は増加する。
 - ② 酸化剤としてはたらき、反応に伴ってマンガンの酸化数は減少する。
 - ③ 還元剤としてはたらき、反応に伴ってマンガンの酸化数は増加する。
 - ④ 還元剤としてはたらき、反応に伴ってマンガンの酸化数は減少する。
- 問 5 混合溶液中の硫酸の質量パーセント濃度[%]に最も近い値を、次の①~⑥から選びなさ

(6) 29.4

V¹₀ e %

① 9.1 ② 9.8 ③ 19.2 ④ 19.6 ⑤ 27.3

問 6	混合溶液	夜中の過酸化力	k素の質量パー	-セント濃度〔%	る]に最も近い	値を,	次の①~⑥から選び
	なさい。	f %					
	① 6.8	② 8.2	③ 10.9	④ 13.6	⑤ 16.3	6	21.8

 1
 90
 2
 180
 3
 360
 4
 540
 5
 720
 6
 900

4	以下の 問 1 ~ 10 に答えなさい。(解答記号 L a J ~ L j J
	問 1 二酸化硫黄、硫化水素、二酸化窒素、二酸化炭素の4種類の気体がA,B,C,Dの容器に別々に入っている。容器Aの気体は無色無臭で水に溶けて弱酸性を示した。また石灰水に通じると白色沈殿を生じた。Aに入っている気体として最も適切なものを、次の①~④から選びなさい。 a ① 二酸化硫黄 SO ₂ ② 硫化水素 H ₂ S ③ 二酸化窒素 NO ₂ ④ 二酸化炭素 CO ₂
	 問 2 問 1 の容器 B の気体は無色で、腐卵臭があり、きわめて毒性が強く、水に少し溶けて弱酸性を示した。カドミウムイオンを含む溶液に通じたら黄色沈殿が生成した。B に入っている気体として最も適切なものを、次の①~④から選びなさい。 b ① 二酸化硫黄 SO₂ ② 硫化水素 H₂S ③ 二酸化窒素 NO₂ ④ 二酸化炭素 CO₂
	問 3 問1の容器 C の気体は赤褐色で刺激臭があり、有毒で、下方置換で捕集した。常温では一部が別の気体となり平衡に達していた。C に入っている気体として最も適切なものを、次の①~④から選びなさい。 c ① 二酸化硫黄 SO2 ② 硫化水素 H ₂ S ③ 二酸化窒素 NO2 ④ 二酸化炭素 CO2
	問 4 問 1 の容器 D の気体は無色で有毒で、水に比較的よく溶け、水溶液は弱酸性を示した。 亜硫酸水素ナトリウムに希塩酸を加えて下方置換で捕集した。D に入っている気体として最も適切なものを、次の①~④から選びなさい。 d ① 二酸化硫黄 SO2 ② 硫化水素 H ₂ S ③ 二酸化窒素 NO2 ④ 二酸化炭素 CO2

問	5 6	花化水素とヨ い	う素	を反応させる	と,	ヨウ化水素と	硫黄	が生成する。	68 g	の硫化水素がヨ
	ウ素	素と過不足な	く反応	芯して 64 g の	硫黄	が生成したと	き,	反応したヨウ	大素の	質量として最も
	適均	切なものを、と	次の(1~9から選び	バなさ	ۆ√›。 e	g	5		
	1	64	2	127	3	191	4	254	(5)	318
	6	381	7	445	8	507	9	572		
問	6 銷	同に濃硫酸を加	加え、	て加熱すると,	硫	酸銅(Ⅱ)と水	と二	酸化硫黄が生	成す	る。1.0 mol の濃
	硫酉	と が銅と過不り	足な	く反応して 32	g Ø	二酸化硫黄が	生成	えしたとき, 5	反応し	た銅の質量とし
	て揖	長も適切なも の	つを,	次の①~9%	いら追	選びなさい。	:	f g		
	1	16	2	32	3	48	4	64	(5)	80
	6	96	7	112	8	128	9	144		
問	7 翁	同に濃硝酸を加	加え、	て反応させる	と, ;	硝酸銅(Ⅱ)と	水と	二酸化窒素カ	生成	する。96gの銅
	が湯	農硝酸と過不足	足なく	く反応して 138	8 g Ø)二酸化窒素が	ぶ生月	戈したとき, Д	支応し	た硝酸の物質量
	とし	て最も適切な	2	のを, 次の①~	-9t	から選びなさい) o	g mo	1	
	1	1.0	2	2.0	3	3.0	4	4.0	(5)	5.0
	6	6.0	7	7.0	8	8.0	9	9.0		
問	8 岁	き酸カルシウ Д	ムに着	希塩酸を反応	させん	ると, 塩化カ	ルシ	ウムと水と二	酸化	炭素が生成する。
	150	gの炭酸カル	シゥ	ムが希塩酸と	過不	「足なく反応し	て(56 g の二酸化	炭素:	が生成したとき、
	反原	応した塩化水	(素の	の物質量とし	て最	貴も適切なも	のも	を, 次の①~	(9) p	ら選びなさい。
	Г	h mol								
	1	1.0	2	1.5	3	2.0	4	2.5	(5)	3.0
	6	3.5	7	4.0	8	4.5	9	5.0		
問	9 釗	同と希硝酸の原	反応で	では硝酸銅(Ⅱ)とオ	と一酸化窒素	をが行	导られる。希 征	消酸カ	ぶ銅と過不足なく
	反点	ちして 75gの	一酸	化窒素が生成	した	とき, 反応し	_{した} 金	桐の質量とし	て最	も適切なものを、
	次の)①~⑨から貰	遅びな	i 。いさな	i	g				
	1	39	2	58	3	89	4	95	(5)	102
	6	128	7	142	8	198	9	238		

- **問10** 炭酸カルシウムが生じて白濁している水溶液に、二酸化炭素を十分に通じたときに観察される現象を説明する文として最も適切なものを、次の①~⑨から選びなさい。 j
 - ① 白濁した水溶液が褐色の濁った状態になる。
 - ② 白濁した水溶液が黄色の濁った状態になる。
 - ③ 白濁した水溶液が赤色の濁った状態になる。
 - ④ 白濁した水溶液が緑色の濁った状態になる。
 - ⑤ 白濁した水溶液が無色透明になる。
 - ⑥ 白濁した水溶液が褐色透明になる。
 - ⑦ 白濁した水溶液が黄色透明になる。
 - ⑧ 白濁した水溶液が赤色透明になる。
 - ⑨ 白濁した水溶液が緑色透明になる。

5 以下の問題[I][Ⅱ]に答えなさい。(解答記号 a ~ i

[I] 次の文章を読み, **問1~7**に答えなさい。(解答記号 a ~ g)

アルケンに硫酸酸性の過マンガン酸カリウム水溶液を加えて加熱すると、炭素間の二重結合が開裂しカルボニル化合物が生成する(図1)。二重結合を形成している炭素原子に水素原子が結合している場合は、生じたアルデヒドがさらに酸化されてカルボン酸になる。なお、一般的に、この反応条件ではベンゼン環は反応しない。また、トルエンに過マンガン酸カリウム水溶液を加えて加熱すると、安息香酸が生成する。

$$R^1$$
 R^3 R^3 R^3 R^4 R^5 R^2 R^3 R^3 R^2 R^3 R^3 R^4 R^5 R^4 R^5 R^5 R^7 R^8 $R^$

図1 アルケンの酸化反応(R^1 , R^2 , R^3 はアルキル基を示す)

分子式 C_9H_{10} で表される芳香族化合物で、互いに異性体である化合物 A と B について、以下の実験 $1\sim5$ を行った。ただし、化合物 B の構造式は図 2 の通りであり、化合物 A もベンゼン環以外の環状構造をもたない。

$$\begin{array}{c|c} CH_3 \\ C \\ C \\ H \end{array}$$

図2 化合物 B の構造式

実験 1: 化合物 A と B に、それぞれ硫酸酸性の過マンガン酸カリウム水溶液を加えて加熱する と、化合物 A からは酸化開裂して化合物 C と D が生成し、化合物 B からは酸化開裂して化合物 D と E が生成した。なお、化合物 D は反応中にさらに酸化されて水と二酸化炭素が生成した。

実験 2: 化合物 C は、o- キシレンを過マンガン酸カリウムで酸化することによっても得られた。また、化合物 C を加熱すると、分子内で縮合反応が起こり、酸無水物が生成した。

実験3:化合物 Eに水酸化ナトリウムとヨウ素を反応させると、黄色沈殿が生じた。

実験 4: 化合物 A に対して、適切な触媒を用いて水を付加させたところ、主生成物として不斉 炭素原子をもつ化合物 F が得られた。

	実験5:化合物Bを試験管にとり、室温、暗所下で臭素を少しずつ加えてよく混ぜると、臭素の色が消失した。このとき化合物Bに1分子の臭素が付加した化合物Gが生成した。									
問 1	問1 文章中の説明を参考にして、シクロヘキセンに硫酸酸性の過マンガン酸カリウム水溶液を加えて加熱したときに生成する化合物の分子式として最も適切なものを、次の①~⑧から選びなさい。 a									
	1	$C_6H_8O_2$	2	$C_6H_8O_4$	($^{\circ}$ C_6H_{10}	$_{0}O_{2}$	4	$C_6H_{10}O_4$	
	(5)	$C_8H_{10}O_2$	6	$C_8H_{10}O_4$	(7 C ₈ H ₁₂	$_{2}O_{2}$	8 ($C_8H_{12}O_4$	
問 2	2	化合物 A 中のメ	チル基	および炭素	素間二重 組	吉合の数の)組み合わ	っせとして	て最も適と	刃なものを.
		··· の①~⑧から選								
		ν, p		, , , , ,	, , , , , , , , , , , , , , , , , , , ,		- XX.			
			1	2	3	4	(5)	6	7	8
		メチル基	0	0	1	1	2	2	3	3
	易	吴素間二重結合	1	2	1	2	1	2	1	2
問厶	① ⑤	化合物 E の分子 C ₇ H ₅ O	② ⑥ 式として ②	C ₇ H ₆ O ₄ C ₈ H ₆ O ₄ ご最も適切	((」なものを (3 C₇H₈(7 C₈H₈(, 次の①	O ₂ O ₂ O~®から O	④ (⑧ (選びなさ ④ (C ₇ H ₈ O ₄ C ₈ H ₈ O ₄	d
問 5	5	化合物Fの構造	む中に存る	生するメラ	チル基,と	こドロキミ	シ基、カノ	レボニル	基の数の	組み合わせ
	と	して最も適切な	ものを,	次の①~	⑧から選	びなさい	。 <u>e</u>			
			1	2	3	4	(5)	6	7	8
		メチル基	1	1	1	1	2	2	2	2
		ヒドロキシ基	0	1	0	1	0	1	0	2
		カルボニル基	1	0	2	1	1	0	2	1
問 6	6	化合物 G の分子			」なものを	, 次の①)~⑧から	選びなさ	. V , °	f
	1	C_6H_5Br	2	$C_6H_4Br_2$		$3 C_7H_8I$		4	$C_7H_7Br_2$	
	5	C_8H_9Br	6	$C_8H_8Br_2$	— 29 —	7 C ₉ H ₁₁	Br	8 ($C_9H_{10}Br_2$	

問	7	実験5	5 において, 70 g	の化合物 G が生成	した	とき,	反応に使われ	れた _:	臭素の量	tとし [*]	て最	も近
	61	値を,	次の①~⑧から	選びなさい。なお,	臭卖	素の密	度は 3.1 g/m	Lと	する。	g		mL
	1	10	2	11	3	12		4	13			
	(5)	14	(6)	15	7	16		8	17			

[Ⅱ] 次の文章を読み, **問8**と**問9**に答えなさい。(解答記号 h ~ i]

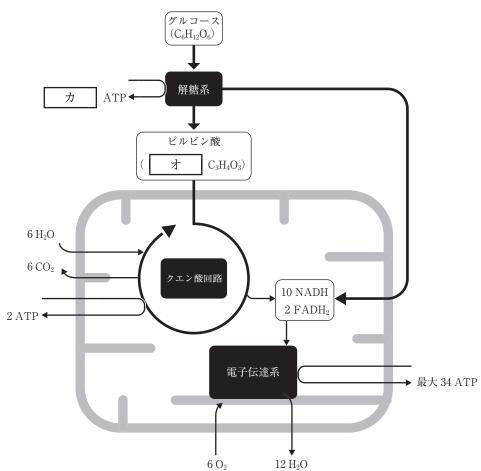
アルコールの分子中にヒドロキシ基が1個のものを一価アルコール,2個以上のものを (ア)アルコールと総称する。また、アルコールは、ヒドロキシ基の結合している炭素原子 に、他の炭素原子(アルキル基)が1個、2個、3個結合しているかによって、それぞれ第一級アルコール、第二級アルコール、第三級アルコールに分類される。第一級アルコールを適当な酸化 剤を用いて酸化するとアルデヒドになり、さらに酸化すると(イ)になる。一方、第二級アルコールが酸化されると(ウ)になる。

アルコールの水への溶解度は、分子量が小さいほど、また、分子中のヒドロキシ基の数が多いほど(エ)なる。したがって、炭化水素基の式量の大きなアルコールほど水に溶け(オ)なる。アルコールのヒドロキシ基は水溶液中で電離し(カ)。

- **問8** 文章中の(ア)~(ウ)にあてはまる語句の組み合わせとして最も適切なものを,次の①~9から選びなさい。 h
 - ① (ア)多価 (イ)エステル (ウ)カルボン酸
 - ② (ア)多価 (イ)ケトン (ウ)エステル
 - ③ (ア)多価 (イ)カルボン酸 (ウ)ケトン
 - ④ (ア)飽和 (イ)エステル (ウ)エステル
 - ⑤ (ア)飽和 (イ)ケトン (ウ)カルボン酸
 - ⑥ (ア)飽和 (イ)カルボン酸 (ウ)ケトン
 - ⑦ (ア)不飽和 (イ)エステル (ウ)エステル
 - ⑧ (ア)不飽和 (イ)ケトン (ウ)カルボン酸
 - ⑨ (ア)不飽和 (イ)カルボン酸 (ウ)ケトン

問9 文章中の(エ)~(カ)にあてはまる語句の組み合わせとして最も適切なものを、次

の①~⑧から選びなさい。 i


- ① (エ)大きく (オ)やすく (カ)やすい
- ② (エ)大きく (オ)やすく (カ)にくい
- ③ (エ)大きく (オ)にくく (カ)やすい
- ④ (エ)大きく (オ)にくく (カ)にくい
- ⑤ (エ)小さく (オ)やすく (カ)やすい
- ⑥ (エ)小さく (オ)やすく (カ)にくい
- ⑦ (エ)小さく (オ)にくく (カ)やすい
- ⑧ (エ)小さく (オ)にくく (カ)にくい

生 物

1	グルコ	1ース1分子を代謝で	する呼吸についてど	大の問1~5に答えなさい。〔解答記号	号 a
~	e	.]			
問	1 解	¥糖系は ア つ	で行われている異化	との代謝経路である。解糖系では有機 	物(グルコー
	ス);	がピルビン酸まで分	解される。その後	, ピルビン酸は 7 で行われて	ているクエン
		国路に入り,二酸化局			てはまる最も
	適切]なものの組み合わ [、]	せを次の①~⑥の	うちから1つ選び,解答欄の記号をマ	アークしなさ
	Λ, o	a			
		ア		1	
	1	ミトコンドリア マ	トリックス	細胞質基質	
	2	ミトコンドリ	ア内膜	細胞質基質	
	3	核		細胞質基質	
	4	細胞質基	質	ミトコンドリア マトリックス	
	(5)	細胞質基	質	ミトコンドリア 内膜	
	6	細胞質基	質	核	
問	2 醪	窒素が存在するとき,	ピルビン酸は	ウ となってクエン酸回路へ入り,	工
	と結	吉合してクエン酸とな	さる。この ウ	」と エ にあてはまる最も適ち	刃な化合物の
	組み	v合わせを次の①~@	のうちから1つ選	き び、解答欄の記号をマークしなさい。	b
		ウ	工		
	1	オキサロ酢酸	コハク酸		
	2	オキサロ酢酸	アセチル CoA		
	3	アセチル CoA	コハク酸		
	4	アセチル CoA	オキサロ酢酸		
	(5)	コハク酸	アセチル CoA		
	6	コハク酸	オキサロ酢酸		

オ カ

- $\widehat{1}$ 1 2
- ② 2 2
- 3 4 2
- 4 1 4
- (5) 2 4
- 6 4 4

解糖系における化学反応式:

クエン酸回路における化学反応式:

オ
$$C_3H_4O_3 + 6H_2O + 8NAD^+ + 2FAD \longrightarrow 6CO_2 + 8NADH + 8H^+ + 2FADH_2 + 2ATP (エネルギー)$$

電子伝達系における化学反応式:

 $10NADH + 10H^{+} + 2FADH_{2} + 6O_{2} \longrightarrow 12H_{2}O + 10NAD^{+} + 2FAD + 最大 34ATP (エネルギー)$

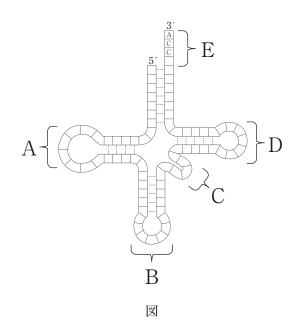
問	4 F	乎吸におり	する酸化還元反応	芯によって,NADHやFADH₂などの キ 型の ク
	が参	多く生じん	る。この	と ク にあてはまる最も適切なものの組み合わせを次
	Ø((i)~(i)0)	うちから1つ選び	び,解答欄の記号をマークしなさい。 d
		キ	ク	
	1	還元	酵素	
	2	還元	補酵素	
	3	還元	阻害物質	
	4	酸化	酵素	
	(5)	酸化	補酵素	
	(<u>6</u>)	酸化	阳害物質	

- **問 5** 呼吸に関する記述として、**適切ではないもの**を次の①~⑤のうちから1つ選び、解答欄の 記号をマークしなさい。 e
 - ① 動物の筋肉細胞が無酸素状態で活動を続けるとき、グルコースはピルビン酸を経て最終的には乳酸となる。
 - ② 脂肪はグリセリンと脂肪酸に分解される。
 - ③ 呼吸は有機物が二酸化炭素と水に分解され、ATPが作り出される一連の化学反応である。
 - ④ 呼吸により分解される、炭水化物・脂肪・タンパク質などの物質を呼吸基質と呼ぶ。
 - ⑤ 電子伝達系において ATP が合成される過程を基質レベルのリン酸化という。

細胞同		は細胞と他の物		
分子物質・ウ	では、細胞の (<u>膜タンパク質)</u> か 」は隣接する組 や無機イオンが直	で、 ア 内側にあるアク の内側にあるアク が介在する、細胞 間胞同士が中空の に接移動すること 間胞同士の細胞膜	, イ , 「 チンフィラメントな 同士や基底膜との結) 膜タンパク質によっ ができるような結合	てつながっており、細胞質中の低
問 1 文章	章中の ア	~ ウ に	あてはまる最も適切	な語句の組み合わせを,次の①~
⑥ ∅	うちから1つ選び	、解答欄の記号	をマークしなさい。	a
	ア	イ	ウ	
1	ギャップ結合	固定結合	密着結合	
2	密着結合	固定結合	ギャップ結合	
3	固定結合	ギャップ結合	密着結合	
4	ギャップ結合	密着結合	固定結合	
5	密着結合	ギャップ結合	固定結合	
6	固定結合	密着結合	ギャップ結合	
とし				膜タンパク質の分子の組み合わせ 解答欄の記号をマークしなさい。
(1)	, ,	(ニガリン		
	カドヘリンやイン		コネクソン	·
_	カドヘリンやイン		中間径フィラメン	
3	中間径フィラ		カドヘリンやインテ	クリイ
4	中間径フィラ		コネクソン	., 1
5	コネクソ		中間径フィラメン	
6	コネクソ	/	カドヘリンやインテ	クリン

問	3 斜	間胞内には細胞	泡の運動や物	質の輸送に関わる様々なタンパク質がある。細胞内で細胞小器
	官な	が動いて見え	る エ	は、 オ フィラメントと カ の相互作用で起こ
	る。	このエ	~ <u>カ</u>	にあてはまる最も適切な語句の組み合わせを、次の①~⑥
	のう	うちから 1 つき	選び, 解答欄	の記号をマークしなさい。 c
		工	オ	カ
	1	小器官運動	アクチ	ン ミオシン
	2	小器官運動	アクチ	ン チューブリン
	3	小器官運動	ミオシ	ン チューブリン
	4	原形質流動	アクチ	ン ミオシン
	(5)	原形質流動	アクチ	ン チューブリン
	6	原形質流動	ミオシ	ン チューブリン
問	4 斜	間胞の生体膜の	の主要な構成	な成分はリン脂質である。リン脂質の構造には、リン酸を含む
		キの部分	分と, 脂質か	らなる ク の部分がある。リン脂質分子の キ の
	部分	予を外側,	ク のi	部分を内側にして, リン脂質分子が規則正しく並ぶことで
		ケを形成	成している。	この キー ~ ケー にあてはまる最も適切な語句の組
	み台	合わせを,次の	か①~⑥のう	ちから1つ選び、解答欄の記号をマークしなさい。 d
		牛	ク	ケ
	1	親水性	中性	脂質二重層
	2	親水性	疎水性	脂質二重層
	3	親水性	疎水性	脂質単層
	4	疎水性	中性	脂質二重層
	(5)	疎水性	親水性	脂質二重層
	6	疎水性	親水性	脂質単層

問 5 細胞の生体膜が持つ、特定の物質のみを通過させる性質を コー という。細胞が ATPのエネルギーを使用して物質を輸送するタンパク質が働いておこる輸送のことを サ という。この コ と サ にあてはまる最も適切な語句の組み合わせ を、次の①~⑥のうちから1つ選び、解答欄の記号をマークしなさい。 コ ① 選択的透過性 能動輸送 2 半透性 能動輸送 ③ 全透性 能動輸送 ④ 選択的透過性 受動輸送 (5) 半透性 受動輸送


⑥ 全透性

受動輸送

3 i	遺伝 l	情報に関する次の文章	重を読んで, 問1∼4 に答えなさい。〔解答記号 □ a □ ∼
j	遺伝情		に存在し、DNA のプロモーターとよばれる特別な塩基配列をも
つ食	頁域カ	いら, アーという	酵素によって mRNA へと転写され、さらにアミノ酸配列に翻訳
され	1て 遣	遺伝子が イ する	。DNA には、遺伝子の領域と遺伝子以外の領域が含まれる。真
核絲	田胞で	では、さらに、個々の遺	伝子の中にアミノ酸配列の情報を含む DNA の部分,エキソンと
そう	うでな	い部分, ウが	ある。転写された RNA は、核から エ に移動して初めて
翻訂	尺され	いるが, ウ を含	んだ mRNA 前駆体は核外に出ていく前に,核内で ロー が
mR	NA ī	前駆体から取り除かれる	らという加工が行われる。そして、残ったエキソンの端と隣のエ
キン	ノンの)端が、次々とつながれる	て mRNA が完成する。また,順番どおりにすべてのエキソンをつ
なか	がずに	こ, 特定のエキソンのみ	をつなげるような加工を、 オ といい、これによって、単
-0	り遺伝	云子から発生の段階や細)	胞の種類の違いに応じて、異なる カ をつくることができ
る。			
問	1 文	て章中の ア と	イ にあてはまる最も適切なものの組み合わせを、次の①~
	90)うちから1つ選び、解2	答欄の記号をマークしなさい。 a
		7	1
	1	DNA ポリメラーゼ	完成
	2	DNA ポリメラーゼ	複製
	3	DNA ポリメラーゼ	発現
	4	RNA ポリメラーゼ	完成
	(5)	RNA ポリメラーゼ	複製
	6	RNA ポリメラーゼ	発現
	7	リプレッサー	完成
	8	リプレッサー	複製
	9	リプレッサー	発現

問 2	文章	季中のウ	と エ	にあてはまる	最も適切	なものの組み合わせを、	次の(1)~
(803	うちから1つ選	び、解答欄の記	記号をマークし	なさい。	b	
		ウ	I				
(1)	イントロン	細胞質基質				
(2	イントロン	核小体				
(3 <	イントロン	小胞体				
(<u>4</u>	イントロン	ゴルジ体				
(<u>5</u>)	オペロン	細胞質基質				
(6	オペロン	核小体				
(7	オペロン	小胞体				
(8	オペロン	ゴルジ体				
問 3	文章	章中の オ	と カ	にあてはまる	最も適切	なものの組み合わせを、	次の①~
(903	うちから1つ選	び、解答欄の	記号をマークし	なさい。	С	
		才		カ			
(1	ラギング	鎖	遺伝子			
(2	ラギング	鎖	プライマー			
(3	ラギング	鎖	タンパク質			
(4	フレームシ	フト	遺伝子			
(5	フレームシ	フト	プライマー			
(6	フレームシ	フト	タンパク質			
(<u>7</u>	選択的スプライ	シング	遺伝子			
(_ \-						
`	8 j	選択的スプライ	シング	プライマー			

問 4 図は、tRNA の模式図である。次の(1)~(3)に答えなさい。

(1)	アンラ	チコドンとは A・	~ E のどこを指	旨すか,	最も適	切なもの	を, 次(D(1)~	⑥のう·	ちから	5 1
~)選び,	解答欄の記号を	マークしなさい	() o	d						
(1) A	② B	3	С	(④ D		(5)	E		
() A &	ヒDの組み合わる	さった構造								
(2)	アミノ	ノ酸を共有結合し	ている部位を	含むのに	‡ A ∼ I	Eのどこ	か, 最も	適切	なものを	生,涉	くの

- ①~⑥のうちから1つ選び、解答欄の記号をマークしなさい。① A② B③ C④ D⑤ E
- ⑥ AとDの組み合わさった構造
- (3) 終止コドンには、5'-UAG-3'、5'-UAA-3'、5'-UGA-3'の3種類がある。次のアンチコドンをもつ tRNA のうち、細胞内の通常の翻訳過程において、終止コドンに対応するものはどれか、最も適切なものを、次の①~⑥のうちから1つ選び、解答欄の記号をマークしなさい。
 「 f
 - ① 5′-UUC-3′
 - ② 5'-UUG-3'
 - ③ 5′-UUA-3′
 - ④ 5'-UAG-3'
 - ⑤ 5′-UGA-3′
 - ⑥ 終止コドンに対応する tRNA は存在しない。

4 ヒトの体内環境に関する次の 問1∼4 に答えなさい。〔解答記号 a ~ e]	
問 1 循環系に関する次の記述のうち, 適切ではないもの を次の①~⑤のうちから1つ選び,	解
答欄の記号をマークしなさい。 a	
① 体液の循環量は心臓の拍動で調節されている。	

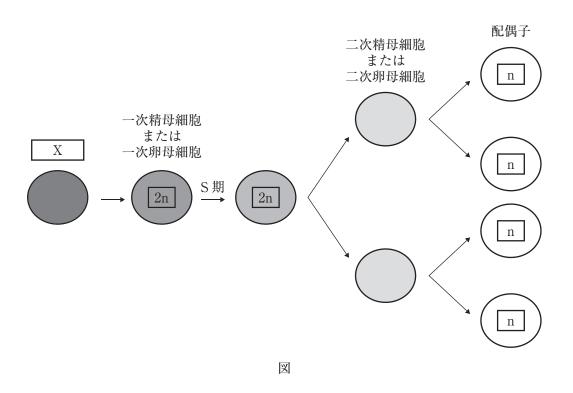
- ② 動脈血は毛細血管を介して静脈血になる。
- ③ 脳への動脈血は心臓の左心房から送り出される。
- ④ 肺動脈は酸素が少ない血液を心臓の右心室から肺へ送る。
- ⑤ 肺静脈の血液は酸素を多く含んでいる。
- **問 2** 血管の特徴に関する次の記述のうち、最も適切なものを次の① \sim ⑤のうちから1つ選び、解答欄の記号をマークしなさい。 b
 - ① 動脈には逆流を防ぐための弁がある。
 - ② 動脈の血管には筋肉があるが、毛細血管にはない。
 - ③ 毛細血管には内皮細胞があるが動脈にはない。
 - ④ 血液の流れる速度は動脈や静脈より毛細血管のほうが速い。
 - ⑤ 血圧は静脈より動脈の方が低い。

問(3 心	臓に関する次の	の文章を読み,	ア~	エ] に入るものの組み合わせとして,
	最も	適切なものを①	~8のうちか	ら1つ選び,	解答欄の記	己号をマークしなさい。 c
	Ш	液循環は心臓	の休みない収約	縮と弛緩の繰	り返しに	よる。心臓の右心房の上側にある
		ア が, 自律	単的な電気信号	を発生するこ	とで心筋の)収縮のリズムをつくる。その信号
	は右	心房と	の収縮を引	き起こし,	ウ	の血液を心室に流れさせる。その
	後,	右心房の電気信	言号は両側の心	室の下側先端	に伝わり、	心室の分厚い筋肉が下から上へと
	収縮	することで血液	変が エ	へ流れる。		
		ア	イ	ウ	エ	
	1	洞房結節	左心房	静脈	動脈	
	2	洞房結節	左心房	動脈	静脈	
	3	洞房結節	左心室	静脈	動脈	
	4)	洞房結節	左心室	動脈	静脈	
	(5)	房室結節	左心房	静脈	動脈	
	6	房室結節	左心房	動脈	静脈	
	7	房室結節	左心室	静脈	動脈	
	(8)	房室結節	左心室	動脈	静脈	

問 4 次の表を参照しながら、腎臓の働きに関する次の(1)と(2)に答えなさい。

成分	血しょう(重量%)	原尿(重量%)	尿(重量%)
タンパク質	7.2	0	0
尿素	0.03	0.03	2
尿酸	0.004	0.004	0.054
ナトリウムイオン	0.3	0.3	0.34
クレアチニン	0.001	0.001	0.075
グルコース	0.10	0.10	0

ろ過されずに血液中に残る成分 ろ過されすべて再吸収される成分


1	クレアチニン	ナトリウムイオン
2	尿素	尿酸
3	尿酸	クレアチニン
4	ナトリウムイオン	尿素
5	グルコース	タンパク質
6	タンパク質	グルコース

- (2) 濃縮率がもっとも高い成分はどれか、最も適切なものを次の①~⑥のうちから1つ選び、解答欄の記号をマークしなさい。 e
 - ① タンパク質
 - ② 尿素
 - ③ 尿酸
 - ④ ナトリウムイオン
 - ⑤ クレアチニン
 - ⑥ グルコース

 5
 動物の減数分裂に関する次の文章を読んで、問1~3 に答えなさい。〔解答記号 a ~

 c]

図に示すように、動物の配偶子(精子、卵)は、連続した2回の細胞分裂(減数分裂)によって形成される。減数分裂を行う細胞は、一次精母細胞または一次卵母細胞である。これらの細胞はS期に DNA を複製し、その後、第一分裂を行い、二次精母細胞または二次卵母細胞を生じる。配偶子は第二分裂後に生じる細胞である。各細胞には核相が示されている。

問 1 精巣内・卵巣内において、下線部 (あ) の一次精母細胞は、どのような細胞から生まれてくるか (図中の X)、また、その細胞の核相は何か、最も適切なものの組み合わせを、次の①~⑥のうちから 1 つ選び、解答欄の記号をマークしなさい。 a

	細胞	核相
1	始原生殖細胞	n
2	始原生殖細胞	2n
3	精原細胞	n
4	精原細胞	2n
(5)	精細胞	n
6	精細胞	2n

問	2 7	「線部(い)の	の一次卵母細胞はどのよ	こうな細胞か、最も適切なものを、次の①~⑤のうちか
	ら]	つ選び,	解答欄の記号をマーク	しなさい。 b
	1	分裂期の	前期になると、卵黄な	どを蓄積し成長する。
	2	分裂期の	中期には、周囲をゼリー	- 層が取り囲むようになる。
	3	分裂期の	中期に二価染色体が形成	成され,ホルモンの刺激が来るまで休止状態になる。
	4	分裂期の	各期は停止することなっ	く進み,直ちに第二分裂を行う。
	(5)	分裂期が	終了すると、2個の二次	欠卵母細胞が生じる。
問	3 7	下線部(う)(の二次精母細胞の核相,	染色体量(DNA量)および性染色体の型について、最
	も通	適切な組み	合わせを、次の①~8	のうちから1つ選び、解答欄の記号をマークしなさい。
	なお	3,染色体	量は、配偶子が含む量	を1とした時の相対値で示している。 c
		核相	染色体量(DNA 量)	性染色体の型
	1	2n	2	X
	2	2n	1	X
	3	2n	2	ΧまたはΥ
	4	2n	1	X または Y
	(5)	n	9	Y

X

ΧまたはΥ

ΧまたはΥ

1

2

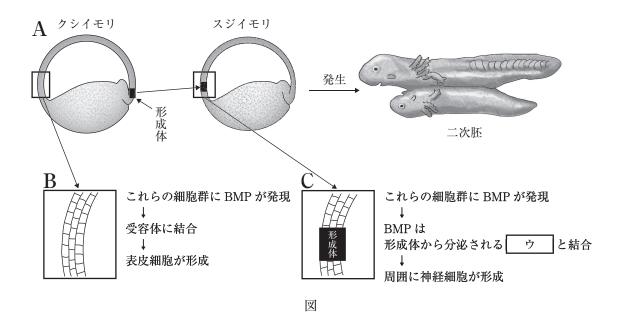
1

6

7

8

n


n

 6
 オーガナイザー(形成体)に関する次の文章を読んで、問1~4に答えなさい。〔解答記号

 a
 d

図のAに示すように、シュペーマンとマンゴルドは、クシイモリの ア の原口背唇部を切り取り、スジイモリの同時期胚の腹側に移植し、発生を進めたところ、本来の胚とともに、腹側に二次胚が生じることを発見した。二次胚では、移植片は主に脊索となり、周囲には イ や体節などができていた。この結果から、原口背唇部には、未分化な細胞に働きかけて イ や体節などを誘導する物質があることが示唆され、オーガナイザーと呼ばれた。 その後、オーガナイザーの本体は、腹側化に働く BMP の働きを抑える ウ であることがわかった。正常発生では、BMP は胚の外側細胞層に存在する受容体に結合し表皮形成遺伝子

の発現を促進させる(図のB)。一方、原口背唇部を移植した場合は、そこから分泌された ウ が BMP と結合し BMP の受容体への結合を阻害するので、移植片周囲の細胞では、神経形成遺伝子が発現する(図のC)。このように、 エ 性の原口背唇部が オ 性の細胞に働きかけて神経組織を誘導する仕組みが明らかになった。

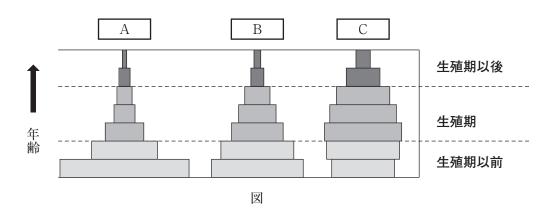
- - ① 初期胞胚
 - ② 後期胞胚
 - ③ 初期原腸胚
 - ④ 後期原腸胚
 - ⑤ 初期神経胚
 - ⑥ 後期神経胚

問 2	イ] に入る語句として	, 最も適切なものを,	次の①~⑥のうちか	ら1つ選び、解答
欄(の記号をつ	マークしなさい。[b		
1	表皮				
2	真皮				
3	筋肉				
4	腸				
(5)	神経管				
6	肺の内原	支			
		_			
問 3	ウ	】に入る分子として -	., 最も適切なものを,	次の①~⑤のうちか	いら1つ選び、解答
欄(の記号をつ	マークしなさい。[С		
1	FGF お	よび TGF-β			
2	ノーダリ	レおよびβカテニン	,		
3	ナノスは	およびビコイド			
4	アクチン	ンおよびミオシン			
(5)	ノギンオ	およびコーディン			
問 4	エ	および オ	に入る、最も適切なも	のの組み合わせを,	次の①~⑥のうち
か	ら1つ選び	び、解答欄の記号を	マークしなさい。	d	
	工	才			
1	外胚葉	中胚葉			
2	外胚葉	内胚葉			
3	内胚葉	外胚葉			
4	内胚葉	中胚葉			
(5)	中胚葉	外胚葉			
6	中胚葉	内胚葉			

7 植物ホルモンによる調節に関する次の問1~5に答えなさい。〔解答記号 a ~
e)
 問 1 葉で合成されたあと、茎頂に移動して花芽形成を促進する物質について最も適切なものを、次の①~⑥のうちから1つ選び、解答欄の記号をマークしなさい。 ① オーキシン ② ジベレリン ③ エチレン
④ フロリゲン⑤ サイトカイニン⑥ アブシシン酸
 問2 オーキシンの働きに関する記述について最も適切なものを、次の①~⑤のうちから1つ選び、解答欄の記号をマークしなさい。 b ① 細胞壁のセルロース繊維を完全に分解する。
② 細胞壁のセルロース繊維の結びつきをゆるくする。
③ 細胞壁のセルロース繊維の合成を促進する。
④ 細胞壁のセルロース繊維の結びつきを強くする。
⑤ 細胞膜を分解する。
 問3 植物の組織から一部を取り出し、ある植物ホルモンを与えると、カルスと呼ばれる未分化の細胞塊が得られる。カルスを得るために与える植物ホルモンについて、最も適切なものの組み合わせを、次の①~⑥のうちから1つ選び、解答欄の記号をマークしなさい。 ① オーキシンとサイトカイニン ② オーキシンとジベレリン ③ ジベレリンとサイトカイニン ④ ジベレリンとエチレン ⑤ エチレンとオーキシン ⑥ エチレンとサイトカイニン
 問 4 アブシシン酸の作用について最も適切な記述を、次の①~⑤のうちから1つ選び、解答欄の記号をマークしなさい。
⑤ 動物による食害を抑制する。

- - ① 葉柄の付け根の細胞がサイトカイニンを受容すると、細胞膜を分解する酵素が合成される。
 - ② 葉柄の付け根の細胞がサイトカイニンを受容すると、細胞壁を分解する酵素が合成される。
 - ③ 葉柄の付け根の細胞がサイトカイニンを受容すると、細胞が突然死する。
 - ④ 葉柄の付け根の細胞がエチレンを受容すると、細胞膜を分解する酵素が合成される。
 - ⑤ 葉柄の付け根の細胞がエチレンを受容すると、細胞壁を分解する酵素が合成される。
 - ⑥ 葉柄の付け根の細胞がエチレンを受容すると、細胞が突然死する。

8	動物の	の環境応答に関	関する次の 問 1 ~	~5 に答えなさい	· 。〔解答記号 [a e	
ŗ			構造に関する次 <i>0</i> も適切なものを		ア~ つ選び,解答欄	オーに入るもの	の組み合 しなさい。
	と ンカ	から信号を受	ューロンは細胞を うなり、 ア け取る。ニュー が伸びて何重にも	は離れた細胞 ロンによっては	包へ信号を送り ,	がり	ア のニューロ : 呼ばれる 扇で欠損し
		ア	1	ウ	工	オ	
	1	軸索	髄鞘	樹状突起	シュワン	ランビエ	
	2	軸索	樹状突起	髄鞘	シュワン	ランビエ	
	3	髄鞘	樹状突起	軸索	シュワン	ランビエ	
	4	髄鞘	軸索	樹状突起	シュワン	ランビエ	
	(5)	樹状突起	軸索	髄鞘	シュワン	ランビエ	
	6	樹状突起	髄鞘	軸索	シュワン	ランビエ	
	7	軸索	髄鞘	樹状突起	ランビエ	シュワン	
	8	軸索	樹状突起	髄鞘	ランビエ	シュワン	
	9	髄鞘	樹状突起	軸索	ランビエ	シュワン	
	a	髄鞘	軸索	樹状突起	ランビエ	シュワン	
	(b)	樹状突起	軸索	髄鞘	ランビエ	シュワン	
	(c)	樹状突起	髄鞘	軸索	ランビエ	シュワン	
Ī	1)~	~⑥のうちから	ら1つ選び,解答	斧欄の記号をマ ー	ークしなさい。	5, 最も適切なもの b	のを, 次の
	(1)		早からの刺激を受				
	2		津神経系により 月		圣情報を伝達する	3 ₀	
	3		コンが筋肉を作動				
	4	脊髄にある道	重動ニューロンに	は皮膚への圧力し	こ反応する。		
	(5)	感覚ニューロ	コンも運動ニュー	-ロンも興奮は-	一方向に伝達され	こる 。	


⑥ 筋紡錘は運動ニューロンによって興奮を伝える。

- 問3 無髄神経繊維の興奮の伝導に関する次の記述のうち、適切ではないものを①~⑥のうちから1つ選び、解答欄の記号をマークしなさい。 c
 ① 無髄神経繊維の中間部が局所的に興奮すると、その部分から両方向に活動電流が流れる。
 ② 細胞内の電気抵抗が大きくなると、興奮の伝導速度は速くなる。
 ③ 静止状態では細胞外に対して細胞内は負に帯電している。
 ④ 無髄神経繊維の中間部で、興奮が隣接部分へ移動すると、興奮が終わった部分は不応期に入る。
 - ⑤ 興奮部に近い隣接部では、遠いところより強い局所電流が流れる。
 - ⑥ 不応期ではどれほど大きく電位が増加しても興奮しない。
- - ① 活動電位はニューロンから隣接するニューロンへ伝達する。
 - ② 神経伝達物質をシナプス間隙へ放出する細胞はシナプス後細胞と呼ばれる。
 - ③ 神経終末で K⁺ が流入するため神経伝達物質が放出される。
 - (4) シナプス小胞がシナプス後膜に融合することで神経伝達物質が放出される。
 - ⑤ 神経伝達物質が特異的な受容体へ結合し、イオンが流入すると、シナプス後電位が変化 する。
 - ⑥ 受容体を介して塩化物イオン CI が流入すると、膜電位が低下して興奮しやすくなる。
- 問 5 刺激の受容に関する次の記述のうち、最も適切なものを次の①~⑥のうちから1つ選び、 解答欄の記号をマークしなさい。 e
 - ① 痛覚は感覚細胞がシナプスを介して感覚ニューロンを興奮させることで生じる。
 - ② 視覚の明順応では、ロドプシンの分解により光への感度が上がり、暗順応ではロドプシンの蓄積により感度が下がる。
 - ③ 音の高低は、うずまき管の基底膜が振動する位置の違いで識別される。
 - ④ 味覚は、基本的な味として6種類に分類できる化学物質が、1種類の味細胞を興奮させることによって識別される。
 - ⑤ 嗅上皮において、嗅細胞がにおい物質を受容して、その情報を別の受容細胞に神経伝達 する。
 - ⑥ 皮膚刺激の感覚神経は脊髄の腹根から入り、その情報は延髄を介して間脳へ送られる。

9 植物の進化に関する次の文章を読んで、 問1~3 に答えなさい。〔解答記号 a ~ c 〕
陸上植物は藻類から進化したと考えられるが、最初の陸上植物は、維管束のないもので、古生 (あ) 代シルル紀の地層で発見された。その後、デボン紀になると維管束をもつ植物が生まれ、大型の
シダ類や裸子植物が出現した。また、中生代の白亜紀になると被子植物が誕生した。
問 1 下線部 あの維管束のない植物として、最も適切なものを、次の①~⑤のうちから1つ選
び,解答欄の記号をマークしなさい。 a
① リンボク
② リニア
③ クックソニア
④ ソテツ
⑤ ゼンマイ
 問2 下線部(い)の裸子植物の性質として、適切ではないものを、次の①~⑤のうちから1つ選び、解答欄の記号をマークしなさい。 b ① 胚珠が剥き出しになっている。 ② イチョウの場合、雌性配偶子は卵(卵細胞)であり、雄性配偶子は精子である。 ③ 雄花と雌花がある。 ④ 主要な光合成色素はクロロフィルである。 ⑤ 前葉体には胞子ができる。
 問3 下線部(う)の被子植物はどのような特徴を持つか、最も適切なものを、次の①~⑤のうちから1つ選び、解答欄の記号をマークしなさい。 c ① C₄ 植物は含まれない。 ② 果実を作る植物である。 ③ 受粉後、花粉管には2個の雄原細胞ができる。 ④ 広葉樹と針葉樹を含む。 ⑤ 胚のうの中央細胞には2個の極体が存在する。

10 動物の個体群について述べた次の文章を読んで、**問**1~6に答えなさい。〔解答記号 a ~ f]

哺乳類や鳥類などの個体群では、産まれたばかりの個体や成熟した個体など、さまざまな生育 段階の個体が混じっていることが多い。個体群における世代や年齢ごとの個体数の分布を ア という。 ア は一般に図のような イ で示される。いろいろな動物の個体群について ア を調べると、図に示した A、B、C の 3 つの型に大別できる。個体群のア 、特に生殖可能な齢の個体数の割合とその雌雄の比率は、その後の個体数の増減に影響する。生物が必要とする食物や生活空間などといった資源の要素や、その資源の利用のしかたを生態的地位(ニッチ)という。食物が共通しているのでニッチが近い2種では、 ウ が生じるため、同じ場所で共存することは エ 。似たような生活をしている複数の種が、同じ地域で共存している場合、ニッチが種ごとに異なっている場合が多い。必要とする資源の要素が似た種どうしでも、ニッチが少しずつ異なる場合は同じ地域に共存することができる。

問 1 文章中の ア と イ にあてはまる最も適切なものの組み合わせを、次の①~

⑧のうちから1つ選び、解答欄の記号をマークしなさい。 a

アイ

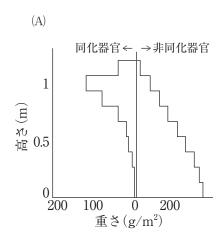
- ① 生物群集 生態ピラミッド
- ② 生物群集 年齢ピラミッド
- ③ 齢構成 生態ピラミッド
- ④ 齢構成 年齢ピラミッド
- ⑤ 集中分布 生態ピラミッド
- ⑥ 集中分布 年齢ピラミッド
- ⑦ 一様分布 生態ピラミッド
- ⑧ 一様分布 年齢ピラミッド

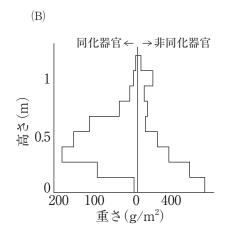
	1	老齢(老化)型	幼若(若齢)型	安定型	
	2	老齢(老化)型	安定型	幼若(若齢)型	
	3	幼若(若齢)型	安定型	老齢(老化)型	
	4	幼若(若齢)型	老齢(老化)型	安定型	
	(5)	安定型	老齢(老化)型	幼若(若齢)型	
	6	安定型	幼若(若齢)型	老齢(老化)型	
問	3 図	国に示した 3 つの型の	のうち,A の型の説	明として、最も適切なものを、次の①~	~⑤のう
	ちか	ゝら1つ選び,解答欄	欄の記号をマークしな	ζ ζ ν [,] 。	
	1	各年齢層の死亡率が	i一定である場合, 幼	カ若層の個体数が多いため, それらの成 1	長によっ
	7	工生殖層の個体数が増	自加して,将来成長す	すると考えられる。	
	2	幼若層の個体数が多	らすぎるため, それら	の成長によって個体数が極端に増加して	て資源を
	消	肖費し尽くし, 将来納	色滅すると考えられる	,) ₀	
	3	生殖層の個体数が大	にきく変動しないため	b, 将来も個体群の大きさは変わらない b	と考えら
	わ	にる。			
	4	幼若層の個体数が少	ンないため、生殖層の)個体数がやがて減少し、将来衰退すると	と考えら
	わ	にる。			
	(5)	幼若層の個体数は少	>ないが、生殖層の個	国体数が多いため、将来成長すると考えら	うれる。
問	4 近	近年の日本におけると	こトは、図のどの型で	であると考えられるか、最も適切なものな	を, 次の
	1)~	-④のうちから1つ選	嘘び,解答欄の記号を	eマークしなさい。 d	
	1	A	② B	③ C	
	4	3つのうちのどれに	も当てはまらない。		

問 2 図の A, B, C の型をそれぞれ何と呼ぶか、最も適切なものを、次の①~⑥のうちから 1

С

つ選び、解答欄の記号をマークしなさい。 b


В


Α

問	5 文	で草中の	ウ」と	ってはまる最も適切な	よものの組み合わせを	:, 次の(1)~
	80)うちから1	つ選び、解答欄の記号を	マークしなさい。	e	
		ウ	エ			
	1	生得的行動	難しい			
	2	生得的行動	できる			
	3	共生	難しい			
	4	共生	できる			
	(5)	種間競争	難しい			
	6	種間競争	できる			
	7	一様分布	難しい			
	8	一様分布	できる			
問	6 下	F線部(あ)の仮	りとして,似たようなニッ	ッチを占める複数の生	生物種の生息場所が、	空間的また
	は眼	時間的に異な	っている場合,これを何	Jというか、最も適切	切なものを,次の①~	-⑧のうちか
	ら1	つ選び、解	答欄の記号をマークしな	:さい。 f		
	1	縄張り	② 食物連鎖	③ 密度効果	④ 中立進化	
	(5)	生態系	⑥ 脊髄反射	⑦ すみわけ	⑧ すりこみ	

11 植生と生態系に関する次の 問1~5 に答えなさい。〔解答記号 a ~ f]	
問 1 植生とは何かについての記述で最も適切なものを、次の①~⑥のうちから1つ選び、解	答
欄の記号をマークしなさい。 a	
① 森林でのみ見られる植物の集まり	
② 森林でのみ見られる動物の集まり	
③ 森林でのみ見られる絶滅危惧種の集まり	
④ ある場所に生育する植物の集まり	
⑤ ある場所に生育する動物の集まり	
⑥ ある場所に生育する絶滅危惧種の集まり	
問 2 日本の草原植生で見られる植物について最も適切なものを、次の①~⑤のうちから1つ	18E
び、解答欄の記号をマークしなさい。 b	达
① ススキ ② ミズナラ ③ サボテン ④ アカマツ ⑤ スギ	
問3 日本で見られない植生はどれか、最も適切なものを、次の①~⑤のうちから1つ選び、	解
答欄の記号をマークしなさい。 c	
① スギ林 ② ミズナラ林 ③ フタバガキ林 ④ 畑	
⑤ 公園の緑地	
問 4 森林土壌には層状構造が見られるが、その最上層と最下層に位置するものについて最も	適
切な組み合わせを、次の① \sim ⑥のうちから 1 つ選び、解答欄の記号をマークしなさ ι	٥,
d	
最上層 最下層	
① 母岩 腐植層	
② 母岩 落葉層	
③ 腐植層 母岩	
④ 腐植層 落葉層	
⑤ 落葉層 腐植層	
⑥ 落葉層 母岩	

問 5 単独の種からなる植物群集の生産構造図に関する、次の(1)と(2)に答えなさい。

図

- (1) 図のような生産構造図をつくる方法とは何か、最も適切なものを、次の①~⑥のうちから 1つ選び、解答欄の記号をマークしなさい。 e
 - ① 群集別刈取法
- ② 植物別刈取法
- ③ 器官別刈取法

- ④ 組織別刈取法
- ⑤ 層別刈取法
- ⑥ 生產別刈取法
- (2) 生産構造図に関する次のi) $\sim iii$) の記述の中から、図の(A)と(B)を説明する記述について最も適切な組み合わせを、次の(1) $\sim (6)$ のうちから(1)つ選び、解答欄の記号をマークしなさい。

f

- i)葉は下層部に多くつき, 茎の部分には比較的少ない。
- ii)葉が下層部から上層部まで均等につき、長くのびた茎が支えている。
- iii)葉が上層部に水平につき、長くのびた茎が支えている。
 - (A) (B)
- ① i ii
- ② i iii
- ③ ii i
- (4) ii iii
- (5) iii i
- 6 iii ii

Ⅱ 解答上の注意

物理

解答は解答用紙の解答欄にマークしてください。例えば、 $\boxed{10}$ と表示のある問いに対して ③と解答する場合は、次の(例)のように解答番号 10 の解答欄の③にマークしてください。 (例)

化学

- 注意 1 アボガドロ定数は、 6.02×10^{23} /mol とする。
- 注意 2 気体はすべて理想気体とし、その $1.00 \, \mathrm{mol} \, \mathrm{o} \, \mathrm{h} \, \mathrm{d} \, \mathrm{t}$ 、標準状態 $(0 \, \mathrm{C}, \, 1.01 \times 10^5 \, \mathrm{Pa})$ で $22.4 \, \mathrm{L/mol} \, \mathrm{e} \, \mathrm{t}$ る。また、気体定数 $R \, \mathrm{tt}$ 、 $8.31 \times 10^3 \, \mathrm{Pa} \cdot \mathrm{L/(mol} \cdot \mathrm{K})$ とする。
- 注意 3 必要があれば、以下の元素の周期表を使いなさい。

1				1	←原	子番号	<u>1</u> ,										2
Н			H ←元素記号								Не						
1.0				1.0	←原	子量											4.0
3	4											5	6	7	8	9	10
Li	Ве		B C N O F									Ne					
6.9	9.0											10.8	12.0	14.0	16.0	19.0	20.2
11	12		13 14 15 16 17									18					
Na	Mg		Al Si P S Cl									Ar					
23.0	24.3											27.0	28.1	31.0	32.1	35.5	40.0
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.1	40.1	45.0	47.9	50.9	52.0	54.9	55.9	58.9	58.7	63.5	65.4	69.7	72.6	74.9	79.0	79.9	83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
85.5	87.6	88.9	91.2	92.9	96.0	_	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3

注意 4 解答は解答用紙の解答欄にマークしてください。例えば、 ___c __ と表示のある問いに対して®と解答する場合は、次の(例)のように**解答番号 c** の**解答欄**の®にマークしてください。

(例)

С	1	2	3	4	(5)	6	7	8	9	
---	---	---	---	---	-----	---	---	---	---	--

生物

解答は解答用紙の解答欄にマークしてください。例えば、 5 と表示のある問いに対して ③と解答する場合は、次の(例)のように解答番号5の解答欄の③にマークしてください。 (例)

5 1 2 3 4 5 6 7 8