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Abstract　Excess utilization of chemical fertilizers in agriculture has caused nitrate pollution to 
groundwater and watershed, which has raised urgent need for effectively removing nitrate from 
water. Biochar has been suggested as one of the most promising adsorbent materials to remove 
nitrate from aqueous solution. However, adsorption capacity of pristine biochar is limited; there-
fore, several modification methods have been proposed to improve the adsorption capacity of 
biochar for nitrate. Therefore, the objectives of this study were to evaluate effects of magnesium 
(Mg)-modified biochars on the adsorption capacity for nitrate and removal efficiency as the sole 
filter media in a continuous flow system (biofilter). Pristine biochars were pyrolyzed at 550°C 
from oak sawdust (OS) and water hyacinth (WH), and Mg-modified biochars were produced by 
soaking feedstock in MgCl2 solution followed by pyrolysis at the same temperature as the pristine 
biochars (OS/Mg and WH/Mg, respectively). Mg-modified biochars showed 84%–89% greater 
adsorption capacity for nitrate than pristine biochars. The highest adsorption capacity for nitrate 
was 19.1 mg g–1 obtained from WH/Mg biochar. Flow direction in the biofilter did not affect ni-
trate removal efficiency of biochar, but slower flow speed was more efficient because nitrate had 
more retention time to find adsorption sites on biochar surface. When used in a continuous flow 
system, the total amount of nitrate removed by WH/Mg biochar in the biofilter represented 27%–
30% of the maximum adsorption capacity of the biochar depending on flow direction and speed. 
Optimization of biofilter structure (size and packing layer) and flow mechanics (flow direction 
and speed) for the maximum nitrate removal by biochar needs to be considered when used in the 
continuous flow system.
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1.	Introduction

At present, it is common to use chemical and 

animal manure fertilizers in agriculture to provide 

sufficient nutrients and organic matter to soils, so as 

to improve soil fertility and crop productivity. How-

ever, chemical fertilizers are one of the major sourc-

es of nitrate (NO3
–) pollution in groundwater, and 

subsequently watersheds. Nitrate from the chemical 

fertilizers are highly soluble in water and cannot 

bind well with soil particles (Zhang et al. 2012). As 

a result, it can enter groundwater and surface water 

easily with rainfall. Further, high concentration of 

nitrate in drinking water can give rise to harmful 
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effects on human health, especially in infants, for 

example causing blue baby syndrome (Hafshejani et 

al. 2016).

Biofiltration or bioretention system is one of the 

most promising water recycling and reuseable sys-

tems. These systems have been widely utilized in de-

veloping countries (Guan et al. 2020). Moreover, the 

systems are chemical-free and passive methods for 

capturing and treating wastewater at source, which 

have proven to be effective in removing heavy met-

als, hydrocarbon, suspended solids, and phosphorus 

(Bratieres et al. 2008; Jay et al. 2019; Mahmoud 

et al. 2019). However, a number of studies have re-

ported that the removal performance for nitrate was 

often limited due to low anion exchange capacity 

of soils (Hsieh & Davis, 2005; Davis, 2008; Line 

& Hunt, 2009). Therefore, for nitrate removal, car-

bon amendments such as crop residues, woodchips, 

sawdust, and biochars have been proposed (Shrestha 

et al. 2018; Jia et al. 2019). However, utilization of 

biochar as the sole biofilter to remove nitrate from 

water has not been fully investigated.

Biochar is a porous, carbon-rich solid product 

derived from thermal conversion of biomass under 

limited oxygen or anaerobic conditions (Inyang & 

Dickenson, 2015). Biochars derived from agricul-

tural wastes and woody materials have shown ef-

fectiveness at removing nitrate (Zhang et al. 2012). 

Research trends about utilization of biochars have 

shifted from agriculture- and soil science-related 

fields such as organic fertilizer and soil amendment 

to environmental applications such as phytoremedia-

tion agent to fix heavy metals in soils and adsorbent 

to remove impurities from water. However, effi-

ciency of biochars in the environmental application 

largely depends on adsorption capacity of biochar 

for adsorbate, and is often restricted due to its limit-

ed adsorption capacity of pristine biochar (Ahmed et 

al. 2016).

The limited adsorption capacity of pristine bio-

chars can be overcome by synthesizing nano-com-

posite biochars (called as functional or enhanced 

biochars) to improve physicochemical properties 

of biochars. Conventionally, the nano-composite 

biochars can be classified into three categories: 

functional nanoparticles-coated biochar, magnetic 

biochar, and metal-oxide composite biochars (Tan 

et al. 2016). The metal-oxide composite biochar can 

be produced by pretreating biomass with chemical 

reagent before pyrolysis. In general, metal salts are 

chosen as the chemical reagent for the pretreatment 

of biomass. The metal ions may attach onto the sur-

face or enter into the interior of biomass during metal-

salt solution biomass soaking. The metal ions then 

transform into nano metal-oxide, and subsequently 

the biomass impregnated with metal ions become 

nano-composite biochars after pyrolysis (Yao et al. 

2013). Among them, magnesium (Mg)-composite 

biochars have shown excellent adsorption capacity 

to remove phosphate and nitrate from water (Yao et 

al. 2011). However, the maximum adsorption capac-

ity and dynamics in a continuous flow system using 

nano metal-oxide composite biochars for nitrate re-

moval have not been fully examined to date.

Water hyacinth (Eichhornia crassipes) is among 

the most noxious, dreadful, and invasive f loating 

aquatic weeds in the world producing 140 million 

daughter plants annually and extending to 1.4 km2 

of cover water area with 28,000 t of fresh biomass 

(Ruan et al. 2016).  The plant brings about serious 

environmental and socioeconomic problems, in-

cluding ecological imbalance in lakes and clogging 

in navigation and irrigation systems (Gaurav et al. 

2020). Attempts using chemical and mechanical 
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means have been made to remove water hyacinth 

from natural water bodies, which eventually are of-

ten to no avail. By contrast, in recent decades, there 

are a number of studies reported that the plant has 

demonstrated its potential for the phytoremediation 

of nitrogen, fecal bacteria, suspended solids, heavy 

metals, dyes, and organic matter in contaminat-

ed wastewaters and surface waters (Rezania et al. 

2015). However, little research has focused on utiliz-

ing water hyacinth as a feedstock to produce biochar 

in removal of nitrate from water bodies.

Therefore, the objectives of this study were to 

evaluate (1) the maximum adsorption capacity of 

Mg-modified biochar for nitrate and (2) nitrate re-

moval efficiency of Mg-modified biochar as the sole 

filter media in biofilter in continuous flow system.

2.	Materials	and	methods

2.1.	Preparation	and	analyses	of	biochars
Oak sawdust (Quercus) and water hyacinth were 

used as feedstock and dried in an oven at 95°C prior 

to pyrolysis. Pristine biochars (OS and WH, respec-

tively) were obtained from pyrolysis in a covered ce-

ramic crucible under oxygen-limiting condition in a 

muffle furnace with increasing rate of 5°C min-1 and 

retention time of 2 h at the maximum temperature of 

550°C. To synthesize Mg-modified biochars (OS/Mg 

and WH/Mg, respectively), firstly 30.5 g of MgCl2･

6H2O was dissolved in 300 mL of ultrapure water, 

into which 10 g of each feedstock was soaked for 4 h. 

The mixture of biomass and MgCl2 were then oven-

dried at 95°C to remove the water. The Mg-modified 

biochars were obtained from the same pyrolysis pro-

cedure as the pristine biochars. After cooling, the 

biochars were shaken with ultrapure water overnight 

at 160 strokes min–1 to wash away the impurities, 

filtered with Whatman No.1 filter paper, dried in the 

oven at 95°C, grounded and sieved to ≤ 500 µm and 

500–2000 µm for adsorption and biofilter experi-

ments, respectively.

Physicochemical properties of the biochars were 

analyzed for pH in a 1:10 biochar:deionised water (w/

v) suspension (Singh et al. 2017); electrical conduc-

tivity in a 1:20 biochar:deionized water (w/v) sus-

pension (Singh et al. 2017); cation exchange capacity 

(Graber et al. 2017); total C (TC), H, and N (TN) 

by Dumas dry oxidation method (Dumas 1930); and 

fixed C, volatile matter, and ash contents by thermal 

gravimetric analysis (Antal et al. 2000).

Specific surface area and pore size distribution 

of the biochars were measured by N gas adsorption 

at 77 K using Advanced Systems Analysis Program 

(ASAP 2010, Micrometritics). The Brunauer Emmett 

Teller (BET) method (Brunaueret al. 1938) was used 

to estimate the surface areas (SBET). Total pore vol-

umes (Vtotal) was estimated from the amount of N ad-

sorbed at a relative pressure. Micropore volume (Vmic) 

was estimated by the t-plot method, and macropore 

and mesopore volumes (Vmacro+meso) were estimated 

by difference of Vtotal and Vmic. After drying at 105°C 

for 24h, the biochar surface was observed by using 

Scanning Electron Microscopy (SEM) for all biochar 

samples before nitrate adsorption.

Fourier transform infrared (FTIR) spectra of the 

biochars were conducted by an FTIR instrument 

(IRPrestige-21 FTIR-8400S, Shimadzu) to analyze 

the surface functional groups for all biochar samples 

before nitrate adsorption, and only WH and WH/Mg 

biochar samples after nitrate adsorption (OS and OS/

Mg biochar samples were not recovered after nitrate 

adsorption experiment).
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2.2.	Biochar	adsorption	kinetic	and	isotherm	
　　	for	nitrate

Nitrate solution for the adsorption experiments was 

prepared by using NaNO3. For the adsorption kinetic 

experiment, the initial solution pH was adjusted to 2.0 

with 1.0 M HCl or 0.05 M NaOH. 50 mg of biochar 

were added into a 50 mL centrifuge tube with 25 mL 

of 10 mg L–1 of nitrate solution. The tubes were shak-

en in a horizontal shaker at 160 strokes min–1 at room 

temperature with different shaking time intervals of 

15, 30, 45, 60, 120, 240, and 1440 min. After each 

shaking time, the mixtures were filtered with What-

man No.1 filter paper followed by 0.45 µm pore size 

nylon membrane. The concentration of nitrate in the 

filtrate was measured using an auto-analyzer, and the 

adsorbed nitrate was calculated by difference from 

the initial concentration.

Adsorption kinetic results were described as the 

following pseudo-first order (Eq. 1) and pseudo-sec-

ond order rate models (Eq. 2).

　　　　　　 　　　　    (1)

　

 　　　　　 　                         
(2)

　

where qt (mg g–1) and qe (mg g–1) were the amount of 

nitrate adsorbed by biochar at t shaking time and at 

equilibrium, respectively; t (min) was the shaking time; 

and k1 (min–1) and k2 (g mg–1 min–1) were the pseudo first 

and pseudo second order rate constants, respectively. The 

initial adsorption rate h (mg g–1 min–1) was calculated by 

using the pseudo-second order kinetic parameters (Eq. 3).

 　　　　　   　　                              (3)

　

The initial concentration of nitrate was prepared as 0, 

10, 20, 50, 80, 100, 200, and 300 mg L–1 for the adsorp-

tion isotherm experiment and adjusted pH to 2.0 with 

1.0 M HCl or 0.05 M NaOH. 50 mg of biochar were 

added into a 50 mL centrifuge tube with 25 mL of each 

nitrate concentration solution. The tubes were shaken in 

the horizontal shaker at 160 strokes min–1 at room tem-

perature for 1440 min. After shaking, the mixtures were 

filtered with Whatman No.1 filter paper followed by 0.45 

µm pore size nylon membrane. The concentration of ni-

trate in the filtrate was measured using the auto-analyz-

er, and the adsorbed nitrate was calculated by difference 

from the initial concentration.

Adsorption isotherm results were fit with the follow-

ing Langmuir (Eq. 4) and Freundlich adsorption iso-

therm models (Eq. 5).

                                                    (4)

　

                                                     (5)
　

where qe (mg g–1) was the amount of nitrate adsorbed 

by biochar at equilibrium; Ce (mg L–1) was the nitrate 

concentration in the solution at equilibrium; qm (mg g–1) 

was the maximum adsorption capacity; KL (L mg–1) and 

KF were the Langmuir and Freundlich constant related 

to adsorption capacity, respectively; and n was the di-

mensionless adsorption constant related to the surface 

heterogeneity.

2.3.	Biofilter	removal	of	nitrate	in	continuous
　　	flow	system

Polyvinyl chloride pipes (1.5 cm internal diameter 

and 12 cm length) were connected with rubber stop-

pers to build a model biofilter (Fig. 1). Glass wool was 

inserted at both ends (3 cm) of a biofilter with 1.382 g of 

biochar sample inside (5 cm) to prevent the biochar from 

washing out. The biofilters were then tapped by hand 

after each layer was poured to ensure no stratification 
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Figure 1. Schematic diagram of biofilter flow system for nitrate removal (upward flow configuration).

in the packed media. After packing, 300 mL ultrapure  

water was fed into all the biofilters (arranged in an up-

ward flow configuration) using peristaltic pump with the 

speed of 50 mL h–1 for 6 h to saturate the biofilter with 

water and remove air space inside the biofilter. 

WH/Mg was the only biochar being used in the bio-

filter experiment for nitrate removal. The experiment 

was carried out with four different treatments in two 

different flow directions (upward and downward) and 

two different flow speeds (50 and 100 mL h–1) to assess 

the effect of biochar removal capacity. A 5.83 mg L–1 

nitrate solution made from NaNO3 was pumped through 

the biofilter for 60 h. Sampling time was 1, 2, 4, 8, 16, 

24, 36, 48, and 60 h, and at each sampling time 20 mL 

was collected from influent before the biofilter (Ci) and 

effluent after the biofilter (Ce) from sampling ports. The 

pH of the solution was measured immediately after sam-

pling, and nitrate concentration was then analyzed by 

using the auto-analyzer.

2.4.	Statistical	analyses
Statistical software STATISTICA 6.1 (StatSoft.Inc., 

Tulsa, OK, USA) was used to carry out the statistical 

analyses. Treatment effects were analyzed by one-way 

Table 1. Physicochemical properties of biochars used in this study.
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Table 2 Surface areas and pore properties of biochars used in this study.

  

analysis of variance. A Tukey honestly significant differ-

ence analysis was performed for multiple comparisons 

of the treatment effects. Statistical significances were 

determined at p < 0.05.

3.	Results

3.1.	Biochar	characterization
All biochars used in this study showed wide alka-

line range (7.88–9.78; Table 1). Pristine WH biochar 

resulted in more alkaline pH than pristine OS bio-

char. Mg-modification caused more alkalinity after 

pyrolysis regardless of feedstock. OS feedstock (OS 

and OS/Mg) resulted in more TC and less TN, as well 

as more fixed C and less ash than WH feedstock (WH 

and WH/Mg). Mg-modification caused more ash con-

tent after pyrolysis regardless of feedstock.

OS and OS/Mg exhibited large total specific sur-

face areas (323 and 270 m2 g–1, respectively), of which 

72%–77% were micro surface areas (249 and 195 

m2 g–1, respectively; Table 2). Pristine WH biochar 

showed much smaller SBET and Smicro (79.8 and 55.4 

m2 g–1, respectively) than pristine OS biochar, but 

Mg-modification caused increase to both areas (276 

and 177 m2 g–1, respectively).

SEM surface images of the biochars showed mor-

phological structures (Fig. 2). Both OS (Fig. 2a) and 

OS/Mg (Fig. 2b) possessed many clear porous struc-

tures, and it appeared that the pore size of OS/Mg 

was slightly larger than that of OS. On the other hand, 

the porous structures were limited in WH (Fig. 2c) 

and WH/Mg (Fig. 2d).

FTIR spectrum of WH and WH/Mg before and 

after nitrate adsorption revealed that a peak around 

1734 cm–1 was possibly attributed to carbonyl func-

tional groups C=O stretching vibration (Fig. 3), which 

may be responsible for nitrate adsorption site (Ab-

del-Ghani et al. 2016). A peak at around 1493 cm–1 

in the spectra shows C=C groups in the biochars 

before and after nitrate adsorption (Kim et al. 2013). 

In addition, peaks around 881 cm–1 found in WH/Mg 

before and after adsorption should correspond to C–

H stretching (Chen et al. 2015). A peak around 1636 

cm–1 in OS and WH before nitrate adsorption (Fig. 

3a) can be attributed to O–H stretching vibration of 

hydrogen-bonded groups and water molecules (Jung 

et al. 2015). Mg-O bonds (711 cm–1) were present in 

the biochars before and after adsorption (Richardson 

& Braterman 2007).
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Figure 2. SEM surface image of (a) OS, (b) OS/Mg, (c) WH and (d) WH/Mg biochars.

3.2.	Biochar	adsorption	kinetic	and	isotherm	
　　for	nitrate

All biochars adsorbed nitrate quickly until 120 min of 

shaking, and reached quasi-equilibria with nitrate after 

240 min, followed by full equilibria by 1440 min (Fig. 4). 

WH biochars showed higher adsorption capacity than OS 

biochars regardless of Mg-modification, and Mg-modi-

fied biochars showed more adsorption capacity than pris-

tine biochars regardless of feedstock. The highest nitrate 

adsorption capacity was obtained from WH/Mg (qe exp = 

9.04 mg g–1; Table 3) at 1440 min shaking time.

Nitrate adsorption data of all biochars were better fit 

to the pseudo-second order kinetic model (R2 = 0.956–

0.999) compared to the pseudo-first order kinetic model 

(R2 = 0.211–0.542; Table 3). The highest nitrate adsorp-

tion capacity calculated by the pseudo-second order 

model was obtained from WH/Mg (qe 2 = 9.23 mg g–1; 

Table 3). The initial adsorption rate h was 3.4–6.2 times 

higher for WH biochars than OS biochars, and the high-

est h was obtained from WH/Mg (0.278 mg g–1min–1; 

Table 3).

All biochars exhibited clear adsorption isotherms 

for nitrate (Fig. 5). The adsorption equilibrium was  

Figure 3. FTIR spectra of (a) OS, OS/Mg, WH, and 
WH/Mg biochars before nitrate adsorption and (b) 
WH and WH/Mg biochars after nitrate adsorption.
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Figure 4. Adsorption kinetic of OS, OS/Mg, WH, and WH/Mg biochars for nitrate. Solid lines represent 
approximation by pseudo-second order kinetic model.

achieved at a concentration of around 200 mg L–1 for all 

biochars. The highest adsorption capacity was obtained 

from WH/Mg, whereas OS showed the lowest. 

Both Langmuir and Freundlich adsorption isotherm 

models fit well with nitrate adsorption data of all bio-

chars (R2 = 0.893–0.983 and 0.954–0.991, respectively; 

Table 4). Comparing two models, the Freundlich model 

fit better with nitrate adsorption by OS/Mg, WH, and 

WH/Mg, while the Langmuir fit better with that by OS. 

The highest maximum adsorption capacity calculated by 

the Langmuir model (qm) was 19.1 mg g–1 for WH/Mg, 

followed by 10.4 mg g–1 for WH, 9.68 mg g–1 for OS/Mg, 

and the lowest value of 5.11 mg g–1 for OS.

3.3.	Biofilter	removal	of	nitrate	in	continuous	
　　flow	system

For both upward and downward flow directions, rela-

tive nitrate concentration in Ce to Ci (Ce/Ci) was almost 

0 for the first 4 h regardless of flow speed (50 or 100 mL 

h–1; Fig. 6). However, Ce/Ci values quickly increased to 

0.358–0.437 for 8 h with 100 mL h–1, while remaining at 

0 with 50 mL h–1, regardless of the flow direction. Then, 

Table 3. Pseudo-first order and pseudo-second order kinetic model parameters for nitrate adsorption kinetic.
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Figure 5. Adsorption isotherms of OS, OS/Mg, WH, and WH/Mg biochars for nitrate. Solid lines repre-
sent approximation by Langmuir adsorption isotherm model. 

Ce/Ci values reached 0.978–1.00 for 36 h with 100 

mL h–1, while continuing to increase or remaining 

relatively constant with 50 mL h–1 even after 36 h, 

regardless of f low direction.

The final pH of the eff luent with upward f low 

direction showed similar trends with time passing 

for both f low speeds (Fig. 6a). The final pH was 

around 9.0 in the beginning, quickly dropped to 

2.3–2.5 for 8 h, and remained relatively constant for 

the rest of time. However, for the downward f low 

direction biofilter, the final pH quickly dropped 

from 9.0 to 2.4 for 4 h and remained relatively con-

stant for the rest of time (Fig. 6b). The flow speed 

appeared to have no effects on pH change over time 

for both flow directions.

Table 4. Langmuir and Freundlich adsorption isotherm model parameters for nitrate adsorption isotherm.
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Figure 6. Relative nitrate concentration in effluent after the biofilter (Ce) to influent before the biofilter (Ci) 
(breakthrough curve) and effluent solution pH with (a) upward and (b) downward flow directions. A dotted 
line represents adsorption saturation point when Ce/Ci = 1. 

4.	Discussion

4.1.	Nitrate	adsorption	kinetics
Adsorption kinetics can provide essential parameters 

about the reaction pathway and mechanism of the ad-

sorption process (Xu et al. 2013). Better fit of biocharsʼ 

nitrate adsorption results with the pseudo second-order 

than the pseudo first-order model (Table 3) can indicate 

that adsorption was governed by physicochemical com-

posite reactions involving external liquid film diffusion, 

surface adsorption, and intraparticle diffusion (Tümsek 

& Avci, 2013). The maximum adsorption capacity of the 

biochars calculated by the pseudo second-order mod-

el (qe 2 = 3.71–9.23 mg g–1) were almost same as those 

from the experiment at 1440 min shaking time (qe exp = 

3.56–9.04 mg g–1), and highest qe 2 was obtained from 

WH/Mg. The initial adsorption rate h values calculated 

by the pseudo-second order model showed better initial 
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performance by WH biochars compared to OS biochars, 

and the highest initial adsorption was obtained from 

WH/Mg. These results confirmed that Mg-modification 

particularly for WH biochar was effective to improve 

adsorption capacity of pristine biochar for nitrate. How-

ever, the optimum kinetic model for nitrate by biochars 

may be different depending on biochar properties such 

as biochar feedstock, production temperatures, and mod-

ification procedures if any. For example, the optimum 

kinetic model was pseudo-first order, pseudo-second 

order, and Elovich models for date-palm Mg/Al-mod-

ified biochar (Alagha et al. 2020), palm leaf residues 

non-modified biochar (Zare & Ghasemi-Fasaei 2019), 

and corncob FeCl3-modified biochar (Long et al. 2019), 

respectively. Therefore, more detailed investigations are 

needed for better understanding on effects of different 

physicochemical properties of feedstock and/or produc-

tion procedures of biochars on physicochemical mecha-

nism for nitrate adsorption by biochars.

4.2.	Nitrate	adsorption	isotherms
The adsorption isotherms of different biochars for 

nitrate showed better fitting results with the Freun-

dlich than the Langmuir adsorption isotherm model 

except for OS biochar (Table 4), indicating reversible 

adsorption process where the biochar surface contain-

ing adsorption sites was heterogeneous and each site 

could hold several molecules in multilayers (Keränen 

et al. 2015; Zhen et al. 2015). Comparing the maxi-

mum adsorption capacity calculated by the Langmuir 

model, Mg-modification of biochars resulted in 1.89 

and 1.84 times higher capacity than pristine biochars 

for OS and WH, respectively (Table 4). For nitrate ad-

sorption, the mechanism may be controlled by multi-

ple interactions such as fixation by ionic bonding with 

exchangeable cations from MgCl2 and electrostatic 

attraction (Hale et al. 2013), which could have hap-

pened with Mg-modified biochars. On the other hand, 

an assumption of the Langmuir adsorption isotherm 

model is that the surface containing the adsorption 

sites is homogeneous and that each site can hold at 

most one molecule in thickness, also known as mono-

layer adsorption (Keränen et al. 2015). Therefore, 

the monolayer adsorption of nitrate on homogenous 

surface could have occurred for OS biochar without 

Mg-modification, thus reducing the maximum adsorp-

tion capacity.

The maximum adsorption capacity of OS biochar in 

this study (5.11 mg g–1; Table 4) was comparable with 

that of OS biochar in other studies (8.94 mg g–1; Wang 

et al. 2015). As seen in this study, improvement of the 

maximum adsorption capacity by Mg-modification 

was also seen in other studies. For example, a peanut 

shell biochar modified by Mg increased nitrate adsorp-

tion capacity to 94 mg g–1 (Zhang et al. 2012). However, 

when OS was modified by LaCl3, the maximum adsorp-

tion capacity increased up to 100 mg g–1 (Wang et al. 

2015). Therefore, the adsorption capacity of biochar for 

nitrate largely depends on types of feedstock, pyrolysis 

conditions, and most importantly modification proce-

dures. The highest maximum adsorption capacity of bio-

char for nitrate found in the most recent literature may 

be 157 mg g–1 when apple branch biochar was modified 

by CO2-activation plus Mg/Al-layered double hydrox-

ides-modification (Wang et al. 2021).

4.3.	Nitrate	removal	by	biofilter
Relative nitrate concentration in Ce to Ci (Ce/Ci) rep-

resents how much nitrate was removed from solution 

(or adsorbed by biochar) in the biofilter, and shows 

1 (one) when the biochar was saturated with nitrate 

(or reached the maximum adsorption capacity). The 

breakthrough curve of the biochar for nitrate showed 

that flow direction (upward or downward) did not seem 



43 プランクトン工学研究 第 1 号（2021）

Table 5. Total nitrate removed by biofilter and relateive percentages to the maximum adsorption capacity 
of biochar.

   　　  　　　

to have significant effects on nitrate removal efficien-

cy of biochar in the biofilter (Fig. 6). However, flow 

speed (50 or 100 mL h–1) appeared to have affected 

removal efficiency of biochar for nitrate. Regardless 

of flow direction, Ce/Ci reached to 1 (biochar satu-

rated with nitrate) at 36 h with 100 mL h–1, while it 

had not reached 1 even at 60 h with 50 mL h–1. The 

removal efficiency of biochars in the biofilter with 

slower flow speed was more efficient because nitrate 

had more retention time to find adsorption sites on the 

biochar surface allowing more nitrate being removed 

by the biochar. The breakthrough curve was also 

strongly dependent on the influent nitrate concentra-

tion; the higher the nitrate concentration, the faster 

the nitrate broke through and the resin was saturated 

(Keränen et al. 2015).

Total amounts of nitrate removed by the biofilter 

and their relative percentages to the maximum ad-

sorption capacity of WH/Mg biochar were assessed 

for different flow direction and flow speed (Table 5). 

Total amounts of nitrate removed was calculated as 

the difference of total amounts of nitrate pumped 

through the biofilter (total nitrate flowed) and total 

amounts of nitrate in effluent sampled after the biofil-

ter for 60 h. Total nitrate removed with upward flow 

direction resulted in 7.92 and 8.74 g, and with down-

ward flow direction 7.20 and 9.26 g with 50 and 100 

mL h–1 flow speed, respectively (Table 5). Percentages 

of total nitrate removed to total nitrate f lowed (% 

removed by biofilter) were comparable between flow 

directions but different by flow speed: 41%–45% and 

25%–26% for slow and fast flow speeds, respectively 

(Table 5). This result confimed again insignificant 

effects of f low direction on the nitrate removal of 

biochar in the biofilter, but noteworthy effects by flow 

speed. It appears clear from this study that faster flow 

speed could result in less retention time of nitrate 

with biochar, thus less adsorption or removal by the 

biofilter. Low nitrate removal percentages by the bio-

filter found in this study could be improved by slow-

ing flow speed even more and/or widening the bio-

filter diameter to increase nitrate retention time with 

biochar in the biofilter. However, percentages of total 

nitrate removed to the maximum adsorption capacity 
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of biochar in the biofilter (% biochar saturated by ni-

trate) calculated as [the maximum adsorption capacity 

of WH/Mg biochar, 19.1 mg g–1; Table 4 × biochar 

weight in the biofilter, 1.382 g] showed comparable 

with 27%–35% regardless of flow direction and flow 

speed (Table 5). This result implies that when used 

in the continuous flow system biochar could adsorb 

nitrate only around 30% of its maximum adsorption 

capacity regardless of flow direction and flow speed. 

The reduced adsorption capacity in the continuous 

f low system could be a result of reduced retention 

time of biochar with nitrate in the biofilter compared 

to 24 h of shaking time in tube for adsorption iso-

therm experiment and/or difference in adsorbed (sat-

urated) fractions of biochar particles depending on 

location within the biofilter. Biochar particles closer 

to influent side of the biofilter may adsorb (be saturat-

ed with) more nitrate than those closer to effluent side 

of the biofilter. Therefore, switching flow directions 

during flowing period could overcome this shortcom-

ing by utilizing biochar particles unsaturated with 

nitrate.

5.	Conclusion

This study demonstrates the adsorption capacity of 

biochars produced from both oak sawdust and water 

hyacinth for removing nitrate from aqueous solution. 

Furthermore, Mg-modification of biochar was proven 

to be effective to improve adsorption capacity of bio-

char. The adsorption isotherms of biochars for nitrate 

were well fit with both Langmuir and Freundlich ad-

sorption isotherm models. Water hyacinth Mg-mod-

ified biochar was also successfully used to remove 

nitrate from the continuous flow system (biofilter), but 

with limited removal efficiency. Optimization of bio-

filter structure (size and packing layer) and flow me-

chanics (flow direction and speed) for the maximum 

nitrate removal by biochar needs to be considered 

when used in the continuous flow system.
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